Page 153 - Read Online
P. 153
Cai et al. Extracell Vesicles Circ Nucleic Acids 2023;4:262-82 https://dx.doi.org/10.20517/evcna.2023.10 Page 19
target genes supporting cross-kingdom RNAi. bioRxiv :2023. DOI
93. Tang D, Wang G, Zhou JM. Receptor kinases in plant-pathogen interactions: more than pattern recognition. Plant Cell 2017;29:618-
37. DOI PubMed PMC
94. Zhang BS, Li YC, Guo HS, Zhao JH. Verticillium dahliae secretes small RNA to target host MIR157d and retard plant floral
transition during infection. Front Plant Sci 2022;13:847086. DOI PubMed PMC
95. Wang B, Sun Y, Song N, et al. Puccinia striiformis f. sp. tritici microRNA-like RNA 1 (Pst-milR1), an important pathogenicity factor
of Pst, impairs wheat resistance to Pst by suppressing the wheat pathogenesis-related 2 gene. New Phytol 2017;215:338-50. DOI
PubMed
96. Mueth NA, Ramachandran SR, Hulbert SH. Small RNAs from the wheat stripe rust fungus (Puccinia striiformis f.sp. tritici). BMC
Genomics 2015;16:718. DOI PubMed PMC
97. Ji HM, Mao HY, Li SJ, et al. Fol-milR1, a pathogenicity factor of Fusarium oxysporum, confers tomato wilt disease resistance by
impairing host immune responses. New Phytol 2021;232:705-18. DOI PubMed PMC
98. Dunker F, Trutzenberg A, Rothenpieler JS, et al. Oomycete small RNAs bind to the plant RNA-induced silencing complex for
virulence. Elife 2020:9. DOI PubMed PMC
99. Kusch S, Singh M, Thieron H, Spanu PD, Panstruga R. Site-specific analysis reveals candidate cross-kingdom small RNAs, tRNA
and rRNA fragments, and signs of fungal RNA phasing in the barley-powdery mildew interaction. Mol Plant Pathol 2023;24:570-87.
DOI PubMed PMC
100. Duanis-Assaf D, Galsurker O, Davydov O, et al. Double-stranded RNA targeting fungal ergosterol biosynthesis pathway controls
Botrytis cinerea and postharvest grey mould. Plant Biotechnol J 2022;20:226-37. DOI PubMed PMC
101. Werner BT, Koch A, Šečić E, et al. Fusarium graminearum DICER-like-dependent sRNAs are required for the suppression of host
immune genes and full virulence. PLoS One 2021;16:e0252365. DOI PubMed PMC
102. Yin C, Zhu H, Jiang Y, Shan Y, Gong L. Silencing dicer-like genes reduces virulence and sRNA generation in penicillium italicum,
the cause of citrus blue mold. Cells 2020;9:363. DOI PubMed PMC
103. Feng H, Xu M, Liu Y, Dong R, Gao X, Huang L. Dicer-like genes are required for H(2)O(2) and KCl stress responses, pathogenicity
and small RNA generation in valsa mali. Front Microbiol 2017;8:1166. DOI PubMed PMC
104. Haile ZM, Gebremichael DE, Capriotti L, et al. Double-stranded RNA targeting dicer-like genes compromises the pathogenicity of
plasmopara viticola on grapevine. Front Plant Sci 2021;12:667539. DOI PubMed PMC
105. Islam MT, Davis Z, Chen L, et al. Minicell-based fungal RNAi delivery for sustainable crop protection. Microb Biotechnol
2021;14:1847-56. DOI PubMed PMC
106. Werner BT, Gaffar FY, Schuemann J, Biedenkopf D, Koch AM. RNA-spray-mediated silencing of fusarium graminearum AGO and
DCL genes improve barley disease resistance. Front Plant Sci 2020;11:476. DOI PubMed PMC
107. Wang Q, An B, Hou X, Guo Y, Luo H, He C. Dicer-like proteins regulate the growth, conidiation, and pathogenicity of
colletotrichum gloeosporioides from hevea brasiliensis. Front Microbiol 2017;8:2621. DOI PubMed PMC
108. Hollister JD, Smith LM, Guo YL, Ott F, Weigel D, Gaut BS. Transposable elements and small RNAs contribute to gene expression
divergence between Arabidopsis thaliana and Arabidopsis lyrata. Proc Natl Acad Sci USA 2011;108:2322-7. DOI PubMed PMC
109. Martinez F, Dubos B, Fermaud M. The role of saprotrophy and virulence in the population dynamics of botrytis cinerea in vineyards.
Phytopathology 2005;95:692-700. DOI PubMed
110. Shahid S, Kim G, Johnson NR, et al. MicroRNAs from the parasitic plant cuscuta campestris target host messenger RNAs. Nature
2018;553:82-5. DOI
111. Wong-Bajracharya J, Singan VR, Monti R, et al. The ectomycorrhizal fungus Pisolithus microcarpus encodes a microRNA involved
in cross-kingdom gene silencing during symbiosis. Proc Natl Acad Sci USA 2022:119. DOI PubMed PMC
112. Silvestri A, Fiorilli V, Miozzi L, Accotto GP, Turina M, Lanfranco L. In silico analysis of fungal small RNA accumulation reveals
putative plant mRNA targets in the symbiosis between an arbuscular mycorrhizal fungus and its host plant. BMC Genomics
2019;20:169. DOI PubMed PMC
113. Ren B, Wang X, Duan J, Ma J. Rhizobial tRNA-derived small RNAs are signal molecules regulating plant nodulation. Science
2019;365:919-22. DOI PubMed
114. Kurihara Y, Watanabe Y. Arabidopsis micro-RNA biogenesis through dicer-like 1 protein functions. Proc Natl Acad Sci U S A
2004;101:12753-8. DOI PubMed PMC
115. Meng X, Jin W, Wu F. Novel tomato miRNA miR1001 initiates cross-species regulation to suppress the conidiospore germination
and infection virulence of Botrytis cinerea in vitro. Gene 2020;759:145002. DOI
116. Wu F, Huang Y, Jiang W, Jin W. Genome-wide identification and validation of tomato-encoded sRNA as the cross-species antifungal
factors targeting the virulence genes of Botrytis cinerea. Front Plant Sci 2023;14:1072181. DOI PubMed PMC
117. Zhang T, Zhao YL, Zhao JH, et al. Cotton plants export microRNAs to inhibit virulence gene expression in a fungal pathogen. Nat
Plants 2016;2:16153. DOI
118. Jiao J, Peng D. Wheat microRNA1023 suppresses invasion of Fusarium graminearum via targeting and silencing FGSG_03101. J
Plant Interact 2018;13:514-21. DOI
119. Zhu C, Liu JH, Zhao JH, et al. A fungal effector suppresses the nuclear export of AGO1-miRNA complex to promote infection in
plants. Proc Natl Acad Sci USA 2022;119:e2114583119. DOI
120. Cui C, Wang Y, Liu J, Zhao J, Sun P, Wang S. A fungal pathogen deploys a small silencing RNA that attenuates mosquito immunity

