Page 153 - Read Online
P. 153

Cai et al. Extracell Vesicles Circ Nucleic Acids 2023;4:262-82  https://dx.doi.org/10.20517/evcna.2023.10  Page 19

                    target genes supporting cross-kingdom RNAi. bioRxiv :2023.  DOI
               93.       Tang D, Wang G, Zhou JM. Receptor kinases in plant-pathogen interactions: more than pattern recognition. Plant Cell 2017;29:618-
                    37.  DOI  PubMed  PMC
               94.       Zhang BS, Li YC, Guo HS, Zhao JH. Verticillium dahliae secretes small RNA to target host MIR157d and retard plant floral
                    transition during infection. Front Plant Sci 2022;13:847086.  DOI  PubMed  PMC
               95.       Wang B, Sun Y, Song N, et al. Puccinia striiformis f. sp. tritici microRNA-like RNA 1 (Pst-milR1), an important pathogenicity factor
                    of Pst, impairs wheat resistance to Pst by suppressing the wheat pathogenesis-related 2 gene. New Phytol 2017;215:338-50.  DOI
                    PubMed
               96.       Mueth NA, Ramachandran SR, Hulbert SH. Small RNAs from the wheat stripe rust fungus (Puccinia striiformis f.sp. tritici). BMC
                    Genomics 2015;16:718.  DOI  PubMed  PMC
               97.       Ji HM, Mao HY, Li SJ, et al. Fol-milR1, a pathogenicity factor of Fusarium oxysporum, confers tomato wilt disease resistance by
                    impairing host immune responses. New Phytol 2021;232:705-18.  DOI  PubMed  PMC
               98.       Dunker F, Trutzenberg A, Rothenpieler JS, et al. Oomycete small RNAs bind to the plant RNA-induced silencing complex for
                    virulence. Elife 2020:9.  DOI  PubMed  PMC
               99.       Kusch S, Singh M, Thieron H, Spanu PD, Panstruga R. Site-specific analysis reveals candidate cross-kingdom small RNAs, tRNA
                    and rRNA fragments, and signs of fungal RNA phasing in the barley-powdery mildew interaction. Mol Plant Pathol 2023;24:570-87.
                    DOI  PubMed  PMC
               100.      Duanis-Assaf D, Galsurker O, Davydov O, et al. Double-stranded RNA targeting fungal ergosterol biosynthesis pathway controls
                    Botrytis cinerea and postharvest grey mould. Plant Biotechnol J 2022;20:226-37.  DOI  PubMed  PMC
               101.      Werner BT, Koch A, Šečić E, et al. Fusarium graminearum DICER-like-dependent sRNAs are required for the suppression of host
                    immune genes and full virulence. PLoS One 2021;16:e0252365.  DOI  PubMed  PMC
               102.      Yin C, Zhu H, Jiang Y, Shan Y, Gong L. Silencing dicer-like genes reduces virulence and sRNA generation in penicillium italicum,
                    the cause of citrus blue mold. Cells 2020;9:363.  DOI  PubMed  PMC
               103.      Feng H, Xu M, Liu Y, Dong R, Gao X, Huang L. Dicer-like genes are required for H(2)O(2) and KCl stress responses, pathogenicity
                    and small RNA generation in valsa mali. Front Microbiol 2017;8:1166.  DOI  PubMed  PMC
               104.      Haile ZM, Gebremichael DE, Capriotti L, et al. Double-stranded RNA targeting dicer-like genes compromises the pathogenicity of
                    plasmopara viticola on grapevine. Front Plant Sci 2021;12:667539.  DOI  PubMed  PMC
               105.      Islam MT, Davis Z, Chen L, et al. Minicell-based fungal RNAi delivery for sustainable crop protection. Microb Biotechnol
                    2021;14:1847-56.  DOI  PubMed  PMC
               106.      Werner BT, Gaffar FY, Schuemann J, Biedenkopf D, Koch AM. RNA-spray-mediated silencing of fusarium graminearum AGO and
                    DCL genes improve barley disease resistance. Front Plant Sci 2020;11:476.  DOI  PubMed  PMC
               107.      Wang Q, An B, Hou X, Guo Y, Luo H, He C. Dicer-like proteins regulate the growth, conidiation, and pathogenicity of
                    colletotrichum gloeosporioides from hevea brasiliensis. Front Microbiol 2017;8:2621.  DOI  PubMed  PMC
               108.      Hollister JD, Smith LM, Guo YL, Ott F, Weigel D, Gaut BS. Transposable elements and small RNAs contribute to gene expression
                    divergence between Arabidopsis thaliana and Arabidopsis lyrata. Proc Natl Acad Sci USA 2011;108:2322-7.  DOI  PubMed  PMC
               109.      Martinez F, Dubos B, Fermaud M. The role of saprotrophy and virulence in the population dynamics of botrytis cinerea in vineyards.
                    Phytopathology 2005;95:692-700.  DOI  PubMed
               110.      Shahid S, Kim G, Johnson NR, et al. MicroRNAs from the parasitic plant cuscuta campestris target host messenger RNAs. Nature
                    2018;553:82-5.  DOI
               111.      Wong-Bajracharya J, Singan VR, Monti R, et al. The ectomycorrhizal fungus Pisolithus microcarpus encodes a microRNA involved
                    in cross-kingdom gene silencing during symbiosis. Proc Natl Acad Sci USA 2022:119.  DOI  PubMed  PMC
               112.      Silvestri A, Fiorilli V, Miozzi L, Accotto GP, Turina M, Lanfranco L. In silico analysis of fungal small RNA accumulation reveals
                    putative plant mRNA targets in the symbiosis between an arbuscular mycorrhizal fungus and its host plant. BMC Genomics
                    2019;20:169.  DOI  PubMed  PMC
               113.      Ren B, Wang X, Duan J, Ma J. Rhizobial tRNA-derived small RNAs are signal molecules regulating plant nodulation. Science
                    2019;365:919-22.  DOI  PubMed
               114.      Kurihara Y, Watanabe Y. Arabidopsis micro-RNA biogenesis through dicer-like 1 protein functions. Proc Natl Acad Sci U S A
                    2004;101:12753-8.  DOI  PubMed  PMC
               115.      Meng X, Jin W, Wu F. Novel tomato miRNA miR1001 initiates cross-species regulation to suppress the conidiospore germination
                    and infection virulence of Botrytis cinerea in vitro. Gene 2020;759:145002.  DOI
               116.      Wu F, Huang Y, Jiang W, Jin W. Genome-wide identification and validation of tomato-encoded sRNA as the cross-species antifungal
                    factors targeting the virulence genes of Botrytis cinerea. Front Plant Sci 2023;14:1072181.  DOI  PubMed  PMC
               117.      Zhang T, Zhao YL, Zhao JH, et al. Cotton plants export microRNAs to inhibit virulence gene expression in a fungal pathogen. Nat
                    Plants 2016;2:16153.  DOI
               118.      Jiao J, Peng D. Wheat microRNA1023 suppresses invasion of Fusarium graminearum via targeting and silencing FGSG_03101. J
                    Plant Interact 2018;13:514-21.  DOI
               119.      Zhu C, Liu JH, Zhao JH, et al. A fungal effector suppresses the nuclear export of AGO1-miRNA complex to promote infection in
                    plants. Proc Natl Acad Sci USA 2022;119:e2114583119.  DOI
               120.      Cui C, Wang Y, Liu J, Zhao J, Sun P, Wang S. A fungal pathogen deploys a small silencing RNA that attenuates mosquito immunity
   148   149   150   151   152   153   154   155   156   157   158