Page 155 - Read Online
P. 155
Cai et al. Extracell Vesicles Circ Nucleic Acids 2023;4:262-82 https://dx.doi.org/10.20517/evcna.2023.10 Page 21
nanodomains. Plant Cell 2022;34:395-417. DOI PubMed PMC
151. Feitosa-Junior OR, Stefanello E, Zaini PA, et al. Proteomic and metabolomic analyses of xylella fastidiosa OMV-enriched fractions
reveal association with virulence factors and signaling molecules of the DSF family. Phytopathology 2019;109:1344-53. DOI
PubMed
152. Ionescu M, Zaini PA, Baccari C, Tran S, da Silva AM, Lindow SE. Xylella fastidiosa outer membrane vesicles modulate plant
colonization by blocking attachment to surfaces. Proc Natl Acad Sci USA 2014;111:E3910-8. DOI PubMed PMC
153. Chowdhury C, Jagannadham MV. Virulence factors are released in association with outer membrane vesicles of Pseudomonas
syringae pv. tomato T1 during normal growth. Biochim Biophys Acta 2013;1834:231-9. DOI PubMed
154. Janda MCL, Rybak K, Meng C, et al. Biophysical and proteomic analyses suggest functions of Pseudomonas syringae pv tomato
DC3000 extracellular vesicles in bacterial growth during plant infection. BioRxiv :2021. DOI
155. McMillan HM, Zebell SG, Ristaino JB, Dong X, Kuehn MJ. Protective plant immune responses are elicited by bacterial outer
membrane vesicles. Cell Rep 2021;34:108645. DOI PubMed PMC
156. Jäger J, Keese S, Roessle M, Steinert M, Schromm AB. Fusion of Legionella pneumophila outer membrane vesicles with eukaryotic
membrane systems is a mechanism to deliver pathogen factors to host cell membranes. Cell Microbiol 2015;17:607-20. DOI
PubMed
157. Bomberger JM, Maceachran DP, Coutermarsh BA, Ye S, O'Toole GA, Stanton BA. Long-distance delivery of bacterial virulence
factors by Pseudomonas aeruginosa outer membrane vesicles. PLoS Pathog 2009;5:e1000382. DOI PubMed PMC
158. Ludwig N, Reissmann S, Schipper K, et al. A cell surface-exposed protein complex with an essential virulence function in Ustilago
maydis. Nat Microbiol 2021;6:722-30. DOI PubMed PMC
159. Kwon S, Rupp O, Brachmann A, et al. mRNA Inventory of Extracellular Vesicles from Ustilago maydis. J Fungi 2021;7:562. DOI
160. Rutter BD, Chu TT, Dallery JF, Zajt KK, O'Connell RJ, Innes RW. The development of extracellular vesicle markers for the fungal
phytopathogen colletotrichum higginsianum. J Extracell Vesicles 2022;11:e12216. DOI PubMed PMC
161. Wytinck N, Manchur CL, Li VH, Whyard S, Belmonte MF. dsRNA uptake in plant pests and pathogens: insights into RNAi-based
insect and fungal control technology. Plants 2020;9:1780. DOI PubMed PMC
162. Rank AP, Koch A. Lab-to-field transition of RNA spray applications - how far are we? Front Plant Sci 2021;12:755203. DOI
PubMed PMC
163. Qiao L, Niño-Sánchez J, Hamby R, et al. Artificial nanovesicles for dsRNA delivery in spray-induced gene silencing for crop
protection. Plant Biotechnol J 2023;21:854-65. DOI
164. Castellanos NL, Smagghe G, Sharma R, Oliveira EE, Christiaens O. Liposome encapsulation and EDTA formulation of dsRNA
targeting essential genes increase oral RNAi-caused mortality in the Neotropical stink bug Euschistus heros. Pest Manag Sci
2019;75:537-48. DOI PubMed
165. Dhandapani RK, Gurusamy D, Palli SR. Protamine-lipid-dsRNA nanoparticles improve RNAi efficiency in the fall armyworm,
spodoptera frugiperda. J Agric Food Chem 2022;70:6634-43. DOI PubMed
166. Gioia S, Hossain MN, Conese M. Biological properties and therapeutic effects of plant-derived nanovesicles. Open Med
2020;15:1096-122. DOI PubMed PMC
167. Dad HA, Gu TW, Zhu AQ, Huang LQ, Peng LH. Plant exosome-like nanovesicles: emerging therapeutics and drug delivery
nanoplatforms. Mol Ther 2021;29:13-31. DOI PubMed PMC
168. Raimondo S, Naselli F, Fontana S, et al. Citrus limon-derived nanovesicles inhibit cancer cell proliferation and suppress CML
xenograft growth by inducing TRAIL-mediated cell death. Oncotarget 2015;6:19514-27. DOI PubMed PMC
169. Chen X, Zhou Y, Yu J. Exosome-like nanoparticles from ginger rhizomes inhibited NLRP3 inflammasome activation. Mol Pharm
2019;16:2690-9. DOI
170. Timms K, Holder B, Day A, Mclaughlin J, Forbes KA, Westwood M. Watermelon-derived extracellular vesicles influence human EX
vivo placental cell behavior by altering intestinal secretions. Mol Nutr Food Res 2022;66:e2200013. DOI PubMed PMC
171. Cong M, Tan S, Li S, et al. Technology insight: Plant-derived vesicles-how far from the clinical biotherapeutics and therapeutic drug
carriers? Adv Drug Deliv Rev 2022;182:114108. DOI PubMed
172. Hackl T, Laurenceau R, Ankenbrand MJ, et al. Novel integrative elements and genomic plasticity in ocean ecosystems. Cell
2023;186:47-62.e16. DOI
173. Schatz D, Schleyer G, Saltvedt MR, Sandaa RA, Feldmesser E, Vardi A. Ecological significance of extracellular vesicles in
modulating host-virus interactions during algal blooms. ISME J 2021;15:3714-21. DOI PubMed PMC
174. Arroyo JD, Chevillet JR, Kroh EM, et al. Argonaute2 complexes carry a population of circulating microRNAs independent of
vesicles in human plasma. Proc Natl Acad Sci U S A 2011;108:5003-8. DOI PubMed PMC
175. Vickers KC, Palmisano BT, Shoucri BM, Shamburek RD, Remaley AT. MicroRNAs are transported in plasma and delivered to
recipient cells by high-density lipoproteins. Nat Cell Biol 2011;13:423-33. DOI PubMed PMC

