Page 155 - Read Online
P. 155

Cai et al. Extracell Vesicles Circ Nucleic Acids 2023;4:262-82  https://dx.doi.org/10.20517/evcna.2023.10  Page 21

                    nanodomains. Plant Cell 2022;34:395-417.  DOI  PubMed  PMC
               151.      Feitosa-Junior OR, Stefanello E, Zaini PA, et al. Proteomic and metabolomic analyses of xylella fastidiosa OMV-enriched fractions
                    reveal association with virulence factors and signaling molecules of the DSF family. Phytopathology 2019;109:1344-53.  DOI
                    PubMed
               152.      Ionescu M, Zaini PA, Baccari C, Tran S, da Silva AM, Lindow SE. Xylella fastidiosa outer membrane vesicles modulate plant
                    colonization by blocking attachment to surfaces. Proc Natl Acad Sci USA 2014;111:E3910-8.  DOI  PubMed  PMC
               153.      Chowdhury C, Jagannadham MV. Virulence factors are released in association with outer membrane vesicles of Pseudomonas
                    syringae pv. tomato T1 during normal growth. Biochim Biophys Acta 2013;1834:231-9.  DOI  PubMed
               154.      Janda MCL, Rybak K, Meng C, et al. Biophysical and proteomic analyses suggest functions of Pseudomonas syringae pv tomato
                    DC3000 extracellular vesicles in bacterial growth during plant infection. BioRxiv :2021.  DOI
               155.      McMillan HM, Zebell SG, Ristaino JB, Dong X, Kuehn MJ. Protective plant immune responses are elicited by bacterial outer
                    membrane vesicles. Cell Rep 2021;34:108645.  DOI  PubMed  PMC
               156.      Jäger J, Keese S, Roessle M, Steinert M, Schromm AB. Fusion of Legionella pneumophila outer membrane vesicles with eukaryotic
                    membrane systems is a mechanism to deliver pathogen factors to host cell membranes. Cell Microbiol 2015;17:607-20.  DOI
                    PubMed
               157.      Bomberger JM, Maceachran DP, Coutermarsh BA, Ye S, O'Toole GA, Stanton BA. Long-distance delivery of bacterial virulence
                    factors by Pseudomonas aeruginosa outer membrane vesicles. PLoS Pathog 2009;5:e1000382.  DOI  PubMed  PMC
               158.      Ludwig N, Reissmann S, Schipper K, et al. A cell surface-exposed protein complex with an essential virulence function in Ustilago
                    maydis. Nat Microbiol 2021;6:722-30.  DOI  PubMed  PMC
               159.      Kwon S, Rupp O, Brachmann A, et al. mRNA Inventory of Extracellular Vesicles from Ustilago maydis. J Fungi 2021;7:562.  DOI
               160.      Rutter BD, Chu TT, Dallery JF, Zajt KK, O'Connell RJ, Innes RW. The development of extracellular vesicle markers for the fungal
                    phytopathogen colletotrichum higginsianum. J Extracell Vesicles 2022;11:e12216.  DOI  PubMed  PMC
               161.      Wytinck N, Manchur CL, Li VH, Whyard S, Belmonte MF. dsRNA uptake in plant pests and pathogens: insights into RNAi-based
                    insect and fungal control technology. Plants 2020;9:1780.  DOI  PubMed  PMC
               162.      Rank AP, Koch A. Lab-to-field transition of RNA spray applications - how far are we? Front Plant Sci 2021;12:755203.  DOI
                    PubMed  PMC
               163.      Qiao L, Niño-Sánchez J, Hamby R, et al. Artificial nanovesicles for dsRNA delivery in spray-induced gene silencing for crop
                    protection. Plant Biotechnol J 2023;21:854-65.  DOI
               164.      Castellanos NL, Smagghe G, Sharma R, Oliveira EE, Christiaens O. Liposome encapsulation and EDTA formulation of dsRNA
                    targeting essential genes increase oral RNAi-caused mortality in the Neotropical stink bug Euschistus heros. Pest Manag Sci
                    2019;75:537-48.  DOI  PubMed
               165.      Dhandapani RK, Gurusamy D, Palli SR. Protamine-lipid-dsRNA nanoparticles improve RNAi efficiency in the fall armyworm,
                    spodoptera frugiperda. J Agric Food Chem 2022;70:6634-43.  DOI  PubMed
               166.      Gioia S, Hossain MN, Conese M. Biological properties and therapeutic effects of plant-derived nanovesicles.  Open Med
                    2020;15:1096-122.  DOI  PubMed  PMC
               167.      Dad HA, Gu TW, Zhu AQ, Huang LQ, Peng LH. Plant exosome-like nanovesicles: emerging therapeutics and drug delivery
                    nanoplatforms. Mol Ther 2021;29:13-31.  DOI  PubMed  PMC
               168.      Raimondo S, Naselli F, Fontana S, et al. Citrus limon-derived nanovesicles inhibit cancer cell proliferation and suppress CML
                    xenograft growth by inducing TRAIL-mediated cell death. Oncotarget 2015;6:19514-27.  DOI  PubMed  PMC
               169.      Chen X, Zhou Y, Yu J. Exosome-like nanoparticles from ginger rhizomes inhibited NLRP3 inflammasome activation. Mol Pharm
                    2019;16:2690-9.  DOI
               170.      Timms K, Holder B, Day A, Mclaughlin J, Forbes KA, Westwood M. Watermelon-derived extracellular vesicles influence human EX
                    vivo placental cell behavior by altering intestinal secretions. Mol Nutr Food Res 2022;66:e2200013.  DOI  PubMed  PMC
               171.      Cong M, Tan S, Li S, et al. Technology insight: Plant-derived vesicles-how far from the clinical biotherapeutics and therapeutic drug
                    carriers? Adv Drug Deliv Rev 2022;182:114108.  DOI  PubMed
               172.      Hackl T, Laurenceau R, Ankenbrand MJ, et al. Novel integrative elements and genomic plasticity in ocean ecosystems. Cell
                    2023;186:47-62.e16.  DOI
               173.      Schatz D, Schleyer G, Saltvedt MR, Sandaa RA, Feldmesser E, Vardi A. Ecological significance of extracellular vesicles in
                    modulating host-virus interactions during algal blooms. ISME J 2021;15:3714-21.  DOI  PubMed  PMC
               174.      Arroyo JD, Chevillet JR, Kroh EM, et al. Argonaute2 complexes carry a population of circulating microRNAs independent of
                    vesicles in human plasma. Proc Natl Acad Sci U S A 2011;108:5003-8.  DOI  PubMed  PMC
               175.      Vickers KC, Palmisano BT, Shoucri BM, Shamburek RD, Remaley AT. MicroRNAs are transported in plasma and delivered to
                    recipient cells by high-density lipoproteins. Nat Cell Biol 2011;13:423-33.  DOI  PubMed  PMC
   150   151   152   153   154   155   156   157   158   159   160