Page 72 - Read Online
P. 72
Page 20 of 21 Guo et al. Energy Mater. 2025, 5, 500041 https://dx.doi.org/10.20517/energymater.2024.214
16, 25938-52. DOI PubMed PMC
74. Liang, Y.; Zheng, T.; Sun, K.; et al. Operando study insights into lithiation/delithiation processes in a poly(ethylene oxide) electrolyte
of all-solid-state lithium batteries by grazing-incidence X-ray scattering. ACS. Appl. Mater. Interfaces. 2024, 16, 33307-15. DOI
75. Xu, M.; Liang, S.; Shi, H.; et al. High-strength MOF-based polymer electrolytes with uniform ionic flow for lithium dendrite
suppression. Small 2024, 20, e2406007. DOI
76. Liu, X.; Wang, D.; Liu, G.; et al. Distinct charge dynamics in battery electrodes revealed by in situ and operando soft X-ray
spectroscopy. Nat. Commun. 2013, 4, 2568. DOI PubMed PMC
77. Zhao, L.; Xiao, C.; Yao, Y.; Jin, X. Measurement of nanoscale film thickness using neutron depth profiling technique. ACS. Appl.
Mater. Interfaces. 2023, 15, 35639-47. DOI PubMed
10
6
78. Lv, S.; Gao, J.; Liu, Y.; Zhao, Y.; Cheng, J.; Li, Z. Neutron depth profiling study on lithium and boron contents of nuclear graphite.
J. Nucl. Sci. and. Technol. 2021, 58, 1018-24. DOI
79. Möller, S.; Schwab, C.; Seidlmayer, S.; et al. The Li battery digital twin - combining 4D modelling, electro-chemistry, neutron, and
ion-beam techniques. J. Power. Sources. 2024, 610, 234681. DOI
80. Liu, D. X.; Wang, J.; Pan, K.; et al. In situ quantification and visualization of lithium transport with neutrons. Angew. Chem. Int. Ed.
2014, 53, 9498-502. DOI
81. Persson, K.; Sethuraman, V. A.; Hardwick, L. J.; et al. Lithium diffusion in graphitic carbon. J. Phys. Chem. Lett. 2010, 1, 1176-80.
DOI
82. Lyons, D. J.; Weaver, J. L.; Co, A. C. Considerations in applying neutron depth profiling (NDP) to Li-ion battery research. J. Mater.
Chem. A. 2022, 10, 2336-51. DOI
83. Liu, M.; Cheng, Z.; Qian, K.; Verhallen, T.; Wang, C.; Wagemaker, M. Efficient Li-metal plating/stripping in carbonate electrolytes
using a LiNO -gel polymer electrolyte, monitored by operando neutron depth profiling. Chem. Mater. 2019, 31, 4564-74. DOI
3
84. Mortensen, K.; Borger, A. L.; Kirkensgaard, J. J. K.; Huang, Q.; Hassager, O.; Almdal, K. Small-angle neutron scattering study of the
structural relaxation of elongationally oriented, moderately stretched three-arm star polymers. Phys. Rev. Lett. 2021, 127, 177801.
DOI PubMed
85. Sun, R.; Melton, M.; Safaie, N.; et al. Molecular view on mechanical reinforcement in polymer nanocomposites. Phys. Rev. Lett.
2021, 126, 117801. DOI
86. Terban, M. W.; Billinge, S. J. L. Structural analysis of molecular materials using the pair distribution function. Chem. Rev. 2022, 122,
1208-72. DOI PubMed PMC
87. Chen, X. C.; Soulen, C.; Burdette-trofimov, M. K.; et al. Origin of rate limitations in solid-state polymer batteries from constrained
segmental dynamics within the cathode. Cell. Rep. Phys. Sci. 2023, 4, 101538. DOI
88. Yang, J.; Mo, F.; Hu, J.; et al. Revealing the dynamic evolution of Li filaments within solid electrolytes by operando small-angle
neutron scattering. Appl. Phys. Lett. 2022, 121, 163901. DOI
89. Teusner, M.; Mata, J.; Sharma, N. In situ synthesis of Cu(II) dicarboxylate metal organic frameworks (MOFs) and their application as
battery materials. Phys. Chem. Chem. Phys. 2023, 25, 12684-93. DOI PubMed
90. Hou, X.; Wang, R.; He, X.; et al. Stabilizing the solid-electrolyte interphase with polyacrylamide for high-voltage aqueous lithium-
ion batteries. Angew. Chem. Int. Ed. 2021, 60, 22812-7. DOI PubMed PMC
91. Bao, W.; Fan, W.; Luo, J.; et al. Imidazolium-type poly(ionic liquid) endows the composite polymer electrolyte membrane with
excellent interface compatibility for all- solid-state lithium metal batteries. ACS. Appl. Mater. Interfaces. 2022, 14, 55664-73. DOI
92. Lin, W.; Zheng, X.; Ma, S.; Ji, K.; Wang, C.; Chen, M. Quasi-solid polymer electrolyte with multiple lithium-ion transport pathways
by in situ thermal-initiating polymerization. ACS. Appl. Mater. Interfaces. 2023, 15, 8128-37. DOI
93. Ebadi, M.; Costa, L. T.; Araujo, C. M.; Brandell, D. Modelling the polymer electrolyte/Li-metal interface by molecular dynamics
simulations. Electrochim. Acta. 2017, 234, 43-51. DOI
94. Wu, L. T.; Nachimuthu, S.; Brandell, D.; Jiang, J. C. Prediction of SEI formation in all-solid-state batteries: computational insights
from PCL-based polymer electrolyte decomposition on lithium-metal. Batteries. Supercaps. 2022, 5, e202200088. DOI
95. Cao, X.; Lu, Y.; Chen, Z.; Zhao, X.; Wang, F. Phase-field investigation of dendrite suppression strategies for all-solid-state lithium
metal batteries. J. Energy. Storage. 2024, 99, 113309. DOI
96. Jiang, W.; Wang, Z.; Hu, L.; Wang, Y.; Ma, Z. Simulations of dendrite and crack and their interactions in solid electrolyte by phase
field method. J. Energy. Storage. 2024, 86, 111126. DOI
97. Wang, W.; Wang, J.; Lin, C.; Ruan, H. Modeling of void-mediated cracking and lithium penetration in all-solid-state batteries. Adv.
Funct. Mater. 2023, 33, 2303484. DOI
98. Geng, X. B.; Li, D. G.; Xu, B. Mechanical stress-thermodynamic phase-field simulation of lithium dendrite growth in solid
electrolyte battery. Acta. Phys. Sin. 2023, 72, 220201. DOI
99. Daru, J.; Forbert, H.; Behler, J.; Marx, D. Coupled cluster molecular dynamics of condensed phase systems enabled by machine
learning potentials: liquid water benchmark. Phys. Rev. Lett. 2022, 129, 226001. DOI PubMed
100. Perumanath, S.; Chubynsky, M. V.; Pillai, R.; Borg, M. K.; Sprittles, J. E. Rolling and sliding modes of nanodroplet spreading:
molecular simulations and a continuum approach. Phys. Rev. Lett. 2023, 131, 164001. DOI
101. Zhu, Y.; Lao, Z.; Zhang, M.; et al. A locally solvent-tethered polymer electrolyte for long-life lithium metal batteries. Nat. Commun.
2024, 15, 3914. DOI PubMed PMC
102. Zhao, W.; Wang, S.; Zhou, L.; Du, X. Reducing interfacial thermal resistance between polyethylene oxide-based solid-state polymer