Page 69 - Read Online
P. 69
Guo et al. Energy Mater. 2025, 5, 500041 https://dx.doi.org/10.20517/energymater.2024.214 Page 17 of 21
DECLARATIONS
Authors’ contributions
Conceived the review and wrote the manuscript: Gu, Y.; Guo, S.; Zhang, Z.; Zhao, C.
Reviewed the manuscript and acquired funding: Li, X.; Gu, Y.; Xu, X.; Wang, H.
Contributed to the discussion of the manuscript: Guo, S.; Li, X.
Availability of data and materials
Not applicable.
Financial support and sponsorship
The work is financially supported by the Shandong Provincial Natural Science Foundation (Grant Nos.
ZR2023QB149 and ZR2021QE218), Scientific Startup Foundation for Doctors of Weifang University (Grant
No. 2023BS40), “Take on challenges and assume leadership” project from Shangrao city of Jiangxi Province
(Grant No. 2022A006) and National Natural Science Foundation of China (Grant No. 52107231).
Conflicts of interest
All authors declared that there are no conflicts of interest.
Ethical approval and consent to participate
Not applicable.
Consent for publication
Not applicable.
Copyright
© The Author(s) 2025.
REFERENCES
1. Goodenough, J. B.; Park, K. S. The Li-ion rechargeable battery: a perspective. J. Am. Chem. Soc. 2013, 135, 1167-76. DOI PubMed
2. Scrosati, B.; Garche, J. Lithium batteries: Status, prospects and future. J. Power. Sources. 2010, 195, 2419-30. DOI
3. Pereira, N.; Amatucci, G. G.; Whittingham, M. S.; Hamlen, R. Lithium-titanium disulfide rechargeable cell performance after 35
years of storage. J. Power. Sources. 2015, 280, 18-22. DOI
4. Yu, X.; Chen, R.; Gan, L.; Li, H.; Chen, L. Battery safety: from lithium-ion to solid-state batteries. Engineering 2023, 21, 9-14. DOI
5. Zhao, Q.; Stalin, S.; Zhao, C. Z.; Archer, L. A. Designing solid-state electrolytes for safe, energy-dense batteries. Nat. Rev. Mater.
2020, 5, 229-52. DOI
6. Tang, X.; Lv, S.; Jiang, K.; Zhou, G.; Liu, X. Recent development of ionic liquid-based electrolytes in lithium-ion batteries. J. Power.
Sources. 2022, 542, 231792. DOI
7. Tang, L.; Xu, Q.; Zhang, Y.; Chen, W.; Wu, M. MOF/PCP-based electrocatalysts for the oxygen reduction reaction. Electrochem.
Energy. Rev. 2022, 5, 32-81. DOI
8. Reddy, R. C. K.; Lin, X.; Zeb, A.; Su, C. Metal-organic frameworks and their derivatives as cathodes for lithium-ion battery
applications: a review. Electrochem. Energy. Rev. 2022, 5, 312-47. DOI
9. Han, L.; Wang, L.; Chen, Z.; et al. Incombustible polymer electrolyte boosting safety of solid-state lithium batteries: a review. Adv.
Funct. Mater. 2023, 33, 2300892. DOI
10. Zhai, Y.; Hou, W.; Tao, M.; et al. Enabling high-voltage "superconcentrated ionogel-in-ceramic" hybrid electrolyte with ultrahigh
+
ionic conductivity and single Li -ion transference number. Adv. Mater. 2022, 34, e2205560. DOI
11. Zhang, W.; Koverga, V.; Liu, S.; et al. Single-phase local-high-concentration solid polymer electrolytes for lithium-metal batteries.
Nat. Energy. 2024, 9, 386-400. DOI
12. Zhou, S.; Zhong, S.; Dong, Y.; et al. Composition and structure design of poly(vinylidene fluoride)-based solid polymer electrolytes
for lithium batteries. Adv. Funct. Mater. 2023, 33, 2214432. DOI
13. Zhang, H.; Chen, Y.; Li, C.; Armand, M. Electrolyte and anode-electrolyte interphase in solid-state lithium metal polymer batteries: a
perspective. SusMat 2021, 1, 24-37. DOI
14. Shen, Z.; Huang, J.; Xie, Y.; Wei, D.; Chen, J.; Shi, Z. Solid electrolyte interphase on lithium metal anodes. ChemSusChem 2024, 17,
e202301777. DOI