Page 71 - Read Online
P. 71
Guo et al. Energy Mater. 2025, 5, 500041 https://dx.doi.org/10.20517/energymater.2024.214 Page 19 of 21
long-life cycle performance of lithium-metal batteries. Colloid. Surface. A. 2024, 691, 133839. DOI
45. Liu, Y.; Lin, D.; Jin, Y.; et al. Transforming from planar to three-dimensional lithium with flowable interphase for solid lithium metal
batteries. Sci. Adv. 2017, 3, eaao0713. DOI PubMed PMC
46. Kobayashi, N. P.; Donley, C. L.; Wang, S. Y.; Williams, R. S. Atomic layer deposition of aluminum oxide on hydrophobic and
hydrophilic surfaces. J. Cryst. Growth. 2007, 299, 218-22. DOI
47. Johnson, R. W.; Hultqvist, A.; Bent, S. F. A brief review of atomic layer deposition: from fundamentals to applications. Mater.
Today. 2014, 17, 236-46. DOI
48. Oviroh, P. O.; Akbarzadeh, R.; Pan, D.; Coetzee, R. A. M.; Jen, T. C. New development of atomic layer deposition: processes,
methods and applications. Sci. Technol. Adv. Mater. 2019, 20, 465-96. DOI PubMed PMC
49. Zhao, B.; Li, J.; Guillaume, M.; Dendooven, J.; Detavernier, C. In vacuo XPS investigation of surface engineering for lithium metal
anodes with plasma treatment. J. Energy. Chem. 2022, 66, 295-305. DOI
50. Fan, Z.; Ding, B.; Zhang, T.; et al. Solid/solid interfacial architecturing of solid polymer electrolyte-based all-solid-state lithium-
sulfur batteries by atomic layer deposition. Small 2019, 15, e1903952. DOI
51. Garbayo, I.; Santiago, A.; Judez, X.; de Buruaga, A. S.; Castillo, J.; Muñoz-márquez, M. A. Alumina nanofilms as active barriers for
polysulfides in high-performance all-solid-state lithium-sulfur batteries. ACS. Appl. Energy. Mater. 2021, 4, 2463-70. DOI
52. Ding, P.; Lin, Z.; Guo, X.; et al. Polymer electrolytes and interfaces in solid-state lithium metal batteries. Mater. Today. 2021, 51,
449-74. DOI
53. Su, S.; Ma, J.; Zhao, L.; et al. Progress and perspective of the cathode/electrolyte interface construction in all-solid-state lithium
batteries. Carbon. Energy. 2021, 3, 866-94. DOI
54. Yu, X.; Jiang, Z.; Yuan, R.; Song, H. A review of the relationship between gel polymer electrolytes and solid electrolyte interfaces in
lithium metal batteries. Nanomaterials 2023, 13, 1789. DOI PubMed PMC
55. He, Y.; Wang, C.; Zhang, R.; et al. A self-healing plastic ceramic electrolyte by an aprotic dynamic polymer network for lithium
metal batteries. Nat. Commun. 2024, 15, 10015. DOI PubMed PMC
56. Möhl, G. E.; Metwalli, E.; Müller-buschbaum, P. In operando small-angle X-ray scattering investigation of nanostructured polymer
electrolyte for lithium-ion batteries. ACS. Energy. Lett. 2018, 3, 1525-30. DOI
57. Cheng, Q.; Wei, L.; Liu, Z.; et al. Operando and three-dimensional visualization of anion depletion and lithium growth by stimulated
Raman scattering microscopy. Nat. Commun. 2018, 9, 2942. DOI PubMed PMC
58. Liu, J.; Song, Z.; Yu, F.; et al. In situ optical observation of lithium dendrite pattern in solid polymer electrolytes. Small. Methods.
2024, e2401233. DOI
59. Otto, S. K.; Riegger, L. M.; Fuchs, T.; et al. In situ investigation of lithium metal-solid electrolyte anode interfaces with ToF-SIMS.
Adv. Mater. Inter. 2022, 9, 2102387. DOI
60. Pereira, R.; Sarode, K. K.; Rafie, A.; Fafarman, A.; Kalra, V. In-operando FTIR study on the redox behavior of sulfurized
polyacrylonitrile as cathode material for Li-S batteries. J. Phys. Chem. C. 2023, 127, 19356-65. DOI
61. Lee, T. H.; Jung, J. G.; Kim, Y. J.; et al. Defect engineering in metal-organic frameworks towards advanced mixed matrix membranes
for efficient propylene/propane separation. Angew. Chem. Int. Ed. 2021, 60, 13081-8. DOI
62. Du, Y.; Sun, G.; Li, Y.; et al. Pre-oxidation of lignin precursors for hard carbon anode with boosted lithium-ion storage capacity.
Carbon 2021, 178, 243-55. DOI
63. He, X.; Larson, J. M.; Bechtel, H. A.; Kostecki, R. In situ infrared nanospectroscopy of the local processes at the Li/polymer
electrolyte interface. Nat. Commun. 2022, 13, 1398. DOI PubMed PMC
64. Wen, Z.; Zhao, Z.; Li, L.; et al. Study on the interfacial mechanism of bisalt polyether electrolyte for lithium metal batteries. Adv.
Funct. Mater. 2022, 32, 2109184. DOI
65. Lipinski, G.; Jeong, K.; Moritz, K.; et al. Application of Raman spectroscopy for sorption analysis of functionalized porous materials.
Adv. Sci. 2022, 9, e2105477. DOI PubMed PMC
66. Tharrault, M.; Desgué, E.; Carisetti, D.; et al. Raman spectroscopy of monolayer to bulk PtSe exfoliated crystals. 2D. Mater. 2024,
2
11, 6. DOI
67. Cao, G.; An, F. Effectiveness of the elastic moduli characterization of graphene or other 2D materials via Raman spectroscopy. Diam.
Relat. Mater. 2024, 146, 111201. DOI
68. Matsuda, Y.; Kuwata, N.; Okawa, T.; Dorai, A.; Kamishima, O.; Kawamura, J. In situ Raman spectroscopy of Li CoO cathode in
x 2
Li/Li PO /LiCoO all-solid-state thin-film lithium battery. Solid. State. Ion. 2019, 335, 7-14. DOI
4
3
2
69. Cheng, X. Q.; Li, H. J.; Zhao, Z. X.; Wang, Y. Z.; Wang, X. M. The use of in-situ Raman spectroscopy in investigating carbon
materials as anodes of alkali metal-ion batteries. New. Carbon. Mater. 2021, 36, 93-105. DOI
70. Freudiger, C. W.; Min, W.; Saar, B. G.; et al. Label-free biomedical imaging with high sensitivity by stimulated Raman scattering
microscopy. Science 2008, 322, 1857-61. DOI PubMed PMC
71. Prince, R. C.; Frontiera, R. R.; Potma, E. O. Stimulated raman scattering: from bulk to nano. Chem. Rev. 2017, 117, 5070-94. DOI
PubMed PMC
72. Min, W.; Freudiger, C. W.; Lu, S.; Xie, X. S. Coherent nonlinear optical imaging: beyond fluorescence microscopy. Annu. Rev. Phys.
Chem. 2011, 62, 507-30. DOI PubMed PMC
73. Aliyah, K.; Appel, C.; Lazaridis, T.; et al. Operando scanning small-/wide-angle X-ray scattering for polymer electrolyte fuel cells:
investigation of catalyst layer saturation and membrane hydration- capabilities and challenges. ACS. Appl. Mater. Interfaces. 2024,