Page 70 - Read Online
P. 70

Page 18 of 21           Guo et al. Energy Mater. 2025, 5, 500041  https://dx.doi.org/10.20517/energymater.2024.214

               15.       Wu, L.; Wang, Y.; Guo, X.; Ding, P.; Lin, Z.; Yu, H. Interface science in polymer-based composite solid electrolytes in lithium metal
                    batteries. SusMat 2022, 2, 264-92.  DOI
               16.       Wu, F.; Zhang, K.; Liu, Y.; et al. Polymer electrolytes and interfaces toward solid-state batteries: recent advances and prospects.
                    Energy. Storage. Mater. 2020, 33, 26-54.  DOI
               17.       Su, G.; Zhang, X.; Xiao, M.; et al. Polymeric electrolytes for solid-state lithium ion batteries: structure design, electrochemical
                    properties and cell performances. ChemSusChem 2024, 17, e202300293.  DOI
               18.       Lu, X.; Wang, Y.; Xu, X.; Yan, B.; Wu, T.; Lu, L. Polymer-based solid-state electrolytes for high-energy-density lithium-ion batteries
                    - review. Adv. Energy. Mater. 2023, 13, 2301746.  DOI
               19.       Hu, L.; Gao, X.; Wang, H.; et al. Progress of polymer electrolytes worked in solid-state lithium batteries for wide-temperature
                    application. Small 2024, 20, e2312251.  DOI
               20.       Lin, Z.; Sheng, O.; Cai, X.; et al. Solid polymer electrolytes in all-solid-state lithium metal batteries: from microstructures to
                    properties. J. Energy. Chem. 2023, 81, 358-78.  DOI
               21.       Ning, Z.; Jolly, D. S.; Li, G.; et al. Visualizing plating-induced cracking in lithium-anode solid-electrolyte cells. Nat. Mater. 2021, 20,
                    1121-9.  DOI
               22.       Zhao, J.; Tang, Y.; Dai, Q.; et al. In situ observation of Li deposition-induced cracking in garnet solid electrolytes. Energy. Environ.
                    Mater. 2022, 5, 524-32.  DOI
               23.       Liu, M.; Ganapathy, S.; Wagemaker, M. A direct view on Li-ion transport and Li-metal plating in inorganic and hybrid solid-state
                    electrolytes. ACC. Chem. Res. 2022, 55, 333-44.  DOI  PubMed  PMC
               24.       Lucero, M.; Qiu, S.; Feng, Z. In situ characterizations of solid-solid interfaces in solid-state batteries using synchrotron X-ray
                    techniques. Carbon. Energy. 2021, 3, 762-83.  DOI
               25.       Wu, L. T.; Andersson, E. K. W.; Hahlin, M.; Mindemark, J.; Brandell, D.; Jiang, J. C. A method for modelling polymer electrolyte
                    decomposition during the Li-nucleation process in Li-metal batteries. Sci. Rep. 2023, 13, 9060.  DOI  PubMed  PMC
               26.       Qiu, W.; Wang, Y.; Liu, J. Multiscale computations and artificial intelligent models of electrochemical performance in Li-ion battery
                    materials. WIREs. Comput. Mol. Sci. 2022, 12, e1592.  DOI
               27.       Li, C.; Bao, L.; Ji, Y.; et al. Combining machine learning and metal-organic frameworks research: novel modeling, performance
                    prediction, and materials discovery. Coordin. Chem. Rev. 2024, 514, 215888.  DOI
               28.       Gu, Q.; Liu, X.; Zhou, X.; Li, J.; Lin, X.; Ma, Y. Recent progress on polymer solid electrolytes for lithium metal batteries. Acta.
                    Chim. Sin. 2024, 82, 449.  DOI
               29.       An, Y.; Han, X.; Liu, Y.; et al. Progress in solid polymer electrolytes for lithium-ion batteries and beyond. Small 2022, 18, e2103617.
                    DOI
               30.       Zhu, J.; Zhang, Z.; Zhao, S.; Westover, A. S.; Belharouak, I.; Cao, P. Single-ion conducting polymer electrolytes for solid-state
                    lithium-metal batteries: design, performance, and challenges. Adv. Energy. Mater. 2021, 11, 2003836.  DOI
               31.       Wu, Y.; Li, Y.; Wang, Y.; Liu, Q.; Chen, Q.; Chen, M. Advances and prospects of PVDF based polymer electrolytes. J. Energy.
                    Chem. 2022, 64, 62-84.  DOI
               32.       Zhao, Y.; Wang, L.; Zhou, Y.; et al. Solid polymer electrolytes with high conductivity and transference number of Li ions for Li-
                    based rechargeable batteries. Adv. Sci. 2021, 8, 2003675.  DOI  PubMed  PMC
               33.       Liu, W.; Yi, C.; Li, L.; et al. Designing polymer-in-salt electrolyte and fully infiltrated 3D electrode for integrated solid-state lithium
                    batteries. Angew. Chem. Int. Ed. 2021, 133, 13041-50.  DOI
               34.       Deng, T.; Cao, L.; He, X.; et al. In situ formation of polymer-inorganic solid-electrolyte interphase for stable polymeric solid-state
                    lithium-metal batteries. Chem 2021, 7, 3052-68.  DOI
               35.       Ma, Q.; Fu, S.; Wu, A.; et al. Designing bidirectionally functional polymer electrolytes for stable solid lithium metal batteries. Adv.
                    Energy. Mater. 2023, 13, 2203892.  DOI
               36.       Sen, S.; Richter, F. H. Typology of battery cells - from liquid to solid electrolytes. Adv. Sci. 2023, 10, e2303985.  DOI  PubMed
                    PMC
               37.       Weiss, M.; Simon, F. J.; Busche, M. R.; et al. From liquid- to solid-state batteries: ion transfer kinetics of heteroionic interfaces.
                    Electrochem. Energy. Rev. 2020, 3, 221-38.  DOI
               38.       Kim, T.; Son, D. Y.; Ono, L. K.; Jiang, Y.; Qi, Y. B. A solid-liquid hybrid electrolyte for lithium ion batteries enabled by a single-
                    body polymer/indium tin oxide architecture. J. Phys. D. Appl. Phys. 2021, 54, 15.  DOI
               39.       Li, X.; Cong, L.; Ma, S.; et al. Low resistance and high stable solid-liquid electrolyte interphases enable high-voltage solid-state
                    lithium metal batteries. Adv. Funct. Mater. 2021, 31, 2010611.  DOI
               40.       Ferreira, M.; Schmidt, R.; Xu, F.; Ketabi, S.; Cai, M.; Zhu, Y. Polydopamine-based polymer layer for enhanced interfacial properties
                    of hybrid ceramic-polymer solid electrolytes. ACS. Appl. Energy. Mater. 2023, 6, 12095-104.  DOI
               41.       Liu, Q.; Dan, Y.; Kong, M.; Niu, Y.; Li, G. Sandwich-structured quasi-solid polymer electrolyte enables high-capacity, long-cycling,
                    and dendrite-free lithium metal battery at room temperature. Small 2023, 19, e2300118.  DOI  PubMed
               42.       Yang, H.; Zhang, Y.; Tennenbaum, M. J.; et al. Polypropylene carbonate-based adaptive buffer layer for stable interfaces of solid
                    polymer lithium metal batteries. ACS. Appl. Mater. Interfaces. 2019, 11, 27906-12.  DOI
               43.       Guan, D.; Huang, Y.; He, M.; et al. Multilayer PEO/LLZTO composite electrolyte enables high-performance solid-state Li-ion
                    batteries. Ionics 2021, 27, 4127-34.  DOI
               44.       Nassir, W. B.; Mengesha, T. H.; Chang, J.; Jose, R.; Yang, C. Multilayer hybrid solid-state electrolyte membrane for the high rate and
   65   66   67   68   69   70   71   72   73   74   75