Page 70 - Read Online
P. 70
Page 18 of 21 Guo et al. Energy Mater. 2025, 5, 500041 https://dx.doi.org/10.20517/energymater.2024.214
15. Wu, L.; Wang, Y.; Guo, X.; Ding, P.; Lin, Z.; Yu, H. Interface science in polymer-based composite solid electrolytes in lithium metal
batteries. SusMat 2022, 2, 264-92. DOI
16. Wu, F.; Zhang, K.; Liu, Y.; et al. Polymer electrolytes and interfaces toward solid-state batteries: recent advances and prospects.
Energy. Storage. Mater. 2020, 33, 26-54. DOI
17. Su, G.; Zhang, X.; Xiao, M.; et al. Polymeric electrolytes for solid-state lithium ion batteries: structure design, electrochemical
properties and cell performances. ChemSusChem 2024, 17, e202300293. DOI
18. Lu, X.; Wang, Y.; Xu, X.; Yan, B.; Wu, T.; Lu, L. Polymer-based solid-state electrolytes for high-energy-density lithium-ion batteries
- review. Adv. Energy. Mater. 2023, 13, 2301746. DOI
19. Hu, L.; Gao, X.; Wang, H.; et al. Progress of polymer electrolytes worked in solid-state lithium batteries for wide-temperature
application. Small 2024, 20, e2312251. DOI
20. Lin, Z.; Sheng, O.; Cai, X.; et al. Solid polymer electrolytes in all-solid-state lithium metal batteries: from microstructures to
properties. J. Energy. Chem. 2023, 81, 358-78. DOI
21. Ning, Z.; Jolly, D. S.; Li, G.; et al. Visualizing plating-induced cracking in lithium-anode solid-electrolyte cells. Nat. Mater. 2021, 20,
1121-9. DOI
22. Zhao, J.; Tang, Y.; Dai, Q.; et al. In situ observation of Li deposition-induced cracking in garnet solid electrolytes. Energy. Environ.
Mater. 2022, 5, 524-32. DOI
23. Liu, M.; Ganapathy, S.; Wagemaker, M. A direct view on Li-ion transport and Li-metal plating in inorganic and hybrid solid-state
electrolytes. ACC. Chem. Res. 2022, 55, 333-44. DOI PubMed PMC
24. Lucero, M.; Qiu, S.; Feng, Z. In situ characterizations of solid-solid interfaces in solid-state batteries using synchrotron X-ray
techniques. Carbon. Energy. 2021, 3, 762-83. DOI
25. Wu, L. T.; Andersson, E. K. W.; Hahlin, M.; Mindemark, J.; Brandell, D.; Jiang, J. C. A method for modelling polymer electrolyte
decomposition during the Li-nucleation process in Li-metal batteries. Sci. Rep. 2023, 13, 9060. DOI PubMed PMC
26. Qiu, W.; Wang, Y.; Liu, J. Multiscale computations and artificial intelligent models of electrochemical performance in Li-ion battery
materials. WIREs. Comput. Mol. Sci. 2022, 12, e1592. DOI
27. Li, C.; Bao, L.; Ji, Y.; et al. Combining machine learning and metal-organic frameworks research: novel modeling, performance
prediction, and materials discovery. Coordin. Chem. Rev. 2024, 514, 215888. DOI
28. Gu, Q.; Liu, X.; Zhou, X.; Li, J.; Lin, X.; Ma, Y. Recent progress on polymer solid electrolytes for lithium metal batteries. Acta.
Chim. Sin. 2024, 82, 449. DOI
29. An, Y.; Han, X.; Liu, Y.; et al. Progress in solid polymer electrolytes for lithium-ion batteries and beyond. Small 2022, 18, e2103617.
DOI
30. Zhu, J.; Zhang, Z.; Zhao, S.; Westover, A. S.; Belharouak, I.; Cao, P. Single-ion conducting polymer electrolytes for solid-state
lithium-metal batteries: design, performance, and challenges. Adv. Energy. Mater. 2021, 11, 2003836. DOI
31. Wu, Y.; Li, Y.; Wang, Y.; Liu, Q.; Chen, Q.; Chen, M. Advances and prospects of PVDF based polymer electrolytes. J. Energy.
Chem. 2022, 64, 62-84. DOI
32. Zhao, Y.; Wang, L.; Zhou, Y.; et al. Solid polymer electrolytes with high conductivity and transference number of Li ions for Li-
based rechargeable batteries. Adv. Sci. 2021, 8, 2003675. DOI PubMed PMC
33. Liu, W.; Yi, C.; Li, L.; et al. Designing polymer-in-salt electrolyte and fully infiltrated 3D electrode for integrated solid-state lithium
batteries. Angew. Chem. Int. Ed. 2021, 133, 13041-50. DOI
34. Deng, T.; Cao, L.; He, X.; et al. In situ formation of polymer-inorganic solid-electrolyte interphase for stable polymeric solid-state
lithium-metal batteries. Chem 2021, 7, 3052-68. DOI
35. Ma, Q.; Fu, S.; Wu, A.; et al. Designing bidirectionally functional polymer electrolytes for stable solid lithium metal batteries. Adv.
Energy. Mater. 2023, 13, 2203892. DOI
36. Sen, S.; Richter, F. H. Typology of battery cells - from liquid to solid electrolytes. Adv. Sci. 2023, 10, e2303985. DOI PubMed
PMC
37. Weiss, M.; Simon, F. J.; Busche, M. R.; et al. From liquid- to solid-state batteries: ion transfer kinetics of heteroionic interfaces.
Electrochem. Energy. Rev. 2020, 3, 221-38. DOI
38. Kim, T.; Son, D. Y.; Ono, L. K.; Jiang, Y.; Qi, Y. B. A solid-liquid hybrid electrolyte for lithium ion batteries enabled by a single-
body polymer/indium tin oxide architecture. J. Phys. D. Appl. Phys. 2021, 54, 15. DOI
39. Li, X.; Cong, L.; Ma, S.; et al. Low resistance and high stable solid-liquid electrolyte interphases enable high-voltage solid-state
lithium metal batteries. Adv. Funct. Mater. 2021, 31, 2010611. DOI
40. Ferreira, M.; Schmidt, R.; Xu, F.; Ketabi, S.; Cai, M.; Zhu, Y. Polydopamine-based polymer layer for enhanced interfacial properties
of hybrid ceramic-polymer solid electrolytes. ACS. Appl. Energy. Mater. 2023, 6, 12095-104. DOI
41. Liu, Q.; Dan, Y.; Kong, M.; Niu, Y.; Li, G. Sandwich-structured quasi-solid polymer electrolyte enables high-capacity, long-cycling,
and dendrite-free lithium metal battery at room temperature. Small 2023, 19, e2300118. DOI PubMed
42. Yang, H.; Zhang, Y.; Tennenbaum, M. J.; et al. Polypropylene carbonate-based adaptive buffer layer for stable interfaces of solid
polymer lithium metal batteries. ACS. Appl. Mater. Interfaces. 2019, 11, 27906-12. DOI
43. Guan, D.; Huang, Y.; He, M.; et al. Multilayer PEO/LLZTO composite electrolyte enables high-performance solid-state Li-ion
batteries. Ionics 2021, 27, 4127-34. DOI
44. Nassir, W. B.; Mengesha, T. H.; Chang, J.; Jose, R.; Yang, C. Multilayer hybrid solid-state electrolyte membrane for the high rate and