Page 28 - Read Online
P. 28
Page 10 of 10 Zhu et al. Energy Mater. 2025, 5, 500034 https://dx.doi.org/10.20517/energymater.2024.201
3+
10. Rettenwander, D.; Blaha, P.; Laskowski, R.; et al. DFT study of the role of Al in the fast ion-conductor Li 7-3x Al 3+x La Zr O garnet.
12
2
3
Chem. Mater. 2014, 26, 2617-23. DOI PubMed PMC
11. El-Shinawi, H.; Paterson, G. W.; Maclaren, D. A.; Cussen, E. J.; Corr, S. A. Low-temperature densification of Al-doped Li La Zr O :
7
12
3
2
a reliable and controllable synthesis of fast-ion conducting garnets. J. Mater. Chem. A. 2017, 5, 319-29. DOI
12. Wagner, R.; Redhammer, G. J.; Rettenwander, D.; et al. Fast Li-ion-conducting garnet-related Li Fe La Zr O with uncommon I4̅3d
7-3x x 3 2 12
structure. Chem. Mater. 2016, 28, 5943-51. DOI PubMed PMC
13. Wu, J. F.; Chen, E. Y.; Yu, Y.; et al. Gallium-Doped Li La Zr O garnet-type electrolytes with high lithium-ion conductivity. ACS.
7 3 2 12
Appl. Mater. Interfaces. 2017, 9, 1542-52. DOI
14. Deviannapoorani, C.; Shankar, L. S.; Ramakumar, S.; Murugan, R. Investigation on lithium ion conductivity and structural stability of
yttrium-substituted Li La Zr O . Ionics 2016, 22, 1281-9. DOI
7 3 2 12
15. Rangasamy, E.; Wolfenstine, J.; Allen, J.; Sakamoto, J. The effect of 24c-site (A) cation substitution on the tetragonal-cubic phase
transition in Li La A Zr O garnet-based ceramic electrolyte. J. Power. Sources. 2013, 230, 261-6. DOI
7-x 3-x x 2 12
16. Ohta, S.; Kobayashi, T.; Asaoka, T. High lithium ionic conductivity in the garnet-type oxide Li La (Zr , Nb )O (x=0-2). J. Power.
7-x 3 2-x x 12
Sources. 2011, 196, 3342-5. DOI
17. Thompson, T.; Sharafi, A.; Johannes, M. D.; et al. A tale of two sites: on defining the carrier concentration in garnet-based ionic
conductors for advanced Li batteries. Adv. Energy. Mater. 2015, 5, 1500096. DOI
18. Mukhopadhyay, S.; Thompson, T.; Sakamoto, J.; et al. Structure and stoichiometry in supervalent doped Li La Zr O . Chem. Mater.
12
7
3
2
2015, 27, 3658-65. DOI
+
19. Dhivya, L.; Murugan, R. Effect of simultaneous substitution of Y and Ta on the stabilization of cubic phase, microstructure, and Li
conductivity of Li La Zr O lithium garnet. ACS. Appl. Mater. Interfaces. 2014, 6, 17606-15. DOI
7 3 2 12
20. Inada, R.; Yasuda, S.; Tojo, M.; Tsuritani, K.; Tojo, T.; Sakurai, Y. Development of lithium-stuffed garnet-type oxide solid
electrolytes with high ionic conductivity for application to all-solid-state batteries. Front. Energy. Res. 2016, 4, 28. DOI
21. Chen, C.; Sun, Y.; He, L.; et al. Microstructural and electrochemical properties of Al- and Ga-doped Li La Zr O garnet solid
7 3 2 12
electrolytes. ACS. Appl. Energy. Mater. 2020, 3, 4708-19. DOI
22. Cao, Z.; Cao, X.; Liu, X.; et al. Effect of Sb-Ba codoping on the ionic conductivity of Li La Zr O ceramic. Ceram. Int. 2015, 41,
2
7
3
12
6232-6. DOI
23. Meesala, Y.; Liao, Y. K.; Jena, A.; et al. An efficient multi-doping strategy to enhance Li-ion conductivity in the garnet-type solid
electrolyte Li La Zr O . J. Mater. Chem. A. 2019, 7, 8589-601. DOI
7 3 2 12
24. Murugan, R.; Thangadurai, V.; Weppner, W. Fast lithium ion conduction in garnet-type Li La Zr O . Angew. Chem. Int. Ed. 2007, 46,
7 3 2 12
7778-81. DOI PubMed
25. Zhang, J.; Li, J.; Zhai, H.; Tan, G.; Tang, X. One-step processing of soft electrolyte/metallic lithium interface for high-performance
solid-state lithium batteries. ACS. Appl. Energy. Mater. 2020, 3, 6139-45. DOI
26. Ihrig, M.; Mishra, T. P.; Scheld, W. S.; et al. Li La Zr O solid electrolyte sintered by the ultrafast high-temperature method. J. Eur.
7
2
12
3
Ceram. Soc. 2021, 41, 6075-9. DOI
27. Zhu, Y.; Zhang, J.; Li, W.; Xue, Y.; Yang, J.; Li, S. Realization of superior ionic conductivity by manipulating the atomic
rearrangement in Al-doped Li La Zr O . Ceram. Int. 2023, 49, 10462-70. DOI
7 3 2 12
28. Cronau, M.; Szabo, M.; König, C.; Wassermann, T. B.; Roling, B. How to measure a reliable ionic conductivity? The stack pressure
dilemma of microcrystalline sulfide-based solid electrolytes. ACS. Energy. Lett. 2021, 6, 3072-7. DOI
29. Lee, C.; Han, S. Y.; Lewis, J. A.; et al. Stack pressure measurements to probe the evolution of the lithium-solid-state electrolyte
interface. ACS. Energy. Lett. 2021, 6, 3261-9. DOI
30. Hosokawa, H.; Takeda, A.; Inada, R.; Sakurai, Y. Tolerance for Li dendrite penetration in Ta-doped Li La Zr O solid electrolytes
2
3
7
12
sintered with Li C B O additive. Mater. Lett. 2020, 279, 128481. DOI
0.3
0.7
2.3
3
+
31. Janani, N.; Ramakumar, S.; Kannan, S.; Murugan, R. Optimization of lithium content and sintering aid for maximized Li conductivity
and density in Ta-doped Li La Zr O . J. Am. Ceram. Soc. 2015, 98, 2039-46. DOI
7 3 2 12
32. Ni, K. H.; Chen, Z. L.; Li, C. C. Densification and stress distribution within the sintered structure of ceramic electrolytes for all-solid-
state Li-ion batteries. Acta. Mater. 2024, 275, 120057. DOI
33. Shen, F.; Guo, W.; Zeng, D.; et al. A simple and highly efficient method toward high-density garnet-type LLZTO solid-state
electrolyte. ACS. Appl. Mater. Interfaces. 2020, 12, 30313-9. DOI
34. Xu, B.; Li, W.; Duan, H.; et al. Li PO -added garnet-type Li La Zr Ta O for Li-dendrite suppression. J. Power. Sources. 2017,
6.5
3
4
3
12
0.5
1.5
354, 68-73. DOI
35. Yamada, H.; Ito, T.; Hongahally, B. R. Sintering mechanisms of high-performance garnet-type solid electrolyte densified by spark
plasma sintering. Electrochim. Acta. 2016, 222, 648-56. DOI
36. Zhang, H.; Wu, Y.; Zhu, J.; et al. Fusing Ta-doped Li La Zr O grains using nanoscale Y O sintering aids for high-performance
7 3 2 12 2 3
solid-state lithium batteries. Nanoscale 2024, 16, 14871-8. DOI
37. Zhang, W.; Sun, C. Effects of CuO on the microstructure and electrochemical properties of garnet-type Li La Zr W O solid
6.3 3 1.65 0.35 12
electrolyte. J. Phys. Chem. Solids. 2019, 135, 109080. DOI