Page 113 - Read Online
P. 113

Chen et al. Energy Mater. 2025, 5, 500064  https://dx.doi.org/10.20517/energymater.2024.163  Page 13 of 14

               13.      Xian, C.; Zhang, S.; Liu, P.; et al. An advanced gel polymer electrolyte for solid-state lithium metal batteries. Small 2024, 20,
                   e2306381.  DOI
               14.      Tu, Q.; Shi, T.; Chakravarthy, S.; Ceder, G. Understanding metal propagation in solid electrolytes due to mixed ionic-electronic
                   conduction. Matter 2021, 4, 3248-68.  DOI
               15.      Singh, D. K.; Fuchs, T.; Krempaszky, C.; et al. Origin of the lithium metal anode instability in solid-state batteries during discharge.
                   Matter 2023, 6, 1463-83.  DOI
               16.      Wan, J.; Wan, M.; Hou, X.; et al. Combining ternary, ionic liquid-based, polymer electrolytes with a single-ion conducting polymer-
                   based interlayer for lithium metal batteries. Energy. Mater. 2024, 4, 400074.  DOI
               17.      Xiao, Y.; Wang, Y.; Bo, S.; Kim, J. C.; Miara, L. J.; Ceder, G. Understanding interface stability in solid-state batteries. Nat. Rev.
                   Mater. 2020, 5, 105-26.  DOI
               18.      Zheng, Y.; Yao, Y.; Ou, J.; et al. A review of composite solid-state electrolytes for lithium batteries: fundamentals, key materials and
                   advanced structures. Chem. Soc. Rev. 2020, 49, 8790-839.  DOI
               19.      Shi, C.; Song, J.; Zhang, Y.; et al. Revealing the mechanisms of lithium-ion transport and conduction in composite solid polymer
                   electrolytes. Cell. Rep. Phy. Sci. 2023, 4, 101321.  DOI
               20.      Zhao, X.; Wang, C.; Liu, H.; Liang, Y.; Fan, L. A review of polymer-based solid-state electrolytes for lithium-metal batteries:
                   structure, kinetic, interface stability, and application. Batteries. Supercaps. 2023, 6, e202200502.  DOI
               21.      Yang, L.; Nie, Y.; Liu, Y.; et al. The plasticizer-free composite block copolymer electrolytes for ultralong lifespan all-solid-state
                   lithium-metal batteries. Nano. Energy. 2022, 100, 107499.  DOI
               22.      Zhou, W.; Wang, S.; Li, Y.; Xin, S.; Manthiram, A.; Goodenough, J. B. Plating a dendrite-free lithium anode with a polymer/ceramic/
                   polymer sandwich electrolyte. J. Am. Chem. Soc. 2016, 138, 9385-8.  DOI
               23.      Yang, X.; Jiang, M.; Gao, X.; et al. Determining the limiting factor of the electrochemical stability window for PEO-based solid
                   polymer electrolytes: main chain or terminal -OH group? Energy. Environ. Sci. 2020, 13, 1318-25.  DOI
                                                                 +
               24.      Duan, S.; Qian, L.; Zheng, Y.; et al. Mechanisms of the accelerated Li  conduction in MOF-based solid-state polymer electrolytes for
                   all-solid-state lithium metal batteries. Adv. Mater. 2024, 36, e2314120.  DOI
               25.      Liang, J.; Hwang, S.; Li, S.; et al. Stabilizing and understanding the interface between nickel-rich cathode and PEO-based electrolyte
                   by lithium niobium oxide coating for high-performance all-solid-state batteries. Nano. Energy. 2020, 78, 105107.  DOI
               26.      Wang, X.; Yushin, G. Chemical vapor deposition and atomic layer deposition for advanced lithium ion batteries and supercapacitors.
                   Energy. Environ. Sci. 2015, 8, 1889-904.  DOI
               27.      Li, Z.; Su, J.; Wang, X. Atomic layer deposition in the development of supercapacitor and lithium-ion battery devices. Carbon 2021,
                   179, 299-326.  DOI
               28.      Karimzadeh, S.; Safaei, B.; Yuan, C.; Jen, T. Emerging atomic layer deposition for the development of high-performance lithium-ion
                   batteries. Electrochem. Energy. Rev. 2023, 6, 192.  DOI
               29.      Jung, Y. S.; Lu, P.; Cavanagh, A. S.; et al. Unexpected improved performance of ALD coated LiCoO /graphite Li-ion batteries. Adv.
                                                                                     2
                   Energy. Mater. 2013, 3, 213-9.  DOI
               30.      Han, X.; Gong, Y.; Fu, K. K.; et al. Negating interfacial impedance in garnet-based solid-state Li metal batteries. Nat. Mater. 2017, 16,
                   572-9.  DOI
               31.      Qian, L.; Zheng, Y.; Or, T.; et al. Advanced material engineering to tailor nucleation and growth towards uniform deposition for
                   anode-less lithium metal batteries. Small 2022, 18, e2205233.  DOI
               32.      Li, Z.; Zheng, Y.; Liao, C.; et al. Advanced polymer materials for protecting lithium metal anodes of liquid-state and solid-state
                   lithium batteries. Adv. Funct. Mater. 2024, 34, 2404427.  DOI
               33.      Qian, H.; Li, X.; Chen, Q.; et al. LiZn/Li O induced chemical confinement enabling dendrite-free Li-metal anode. Adv. Funct. Mater.
                                              2
                   2024, 34, 2310143.  DOI
               34.      Zhao, Y.; Zheng, K.; Sun, X. Addressing interfacial issues in liquid-based and solid-state batteries by atomic and molecular layer
                   deposition. Joule 2018, 2, 2583-604.  DOI
               35.      Chang, C.; Hu, S.; Li, T.; et al. A robust gradient solid electrolyte interphase enables fast Zn dissolution and deposition dynamics.
                   Energy. Environ. Sci. 2024, 17, 680-94.  DOI
               36.      Yang, L.; Luo, D.; Zheng, Y.; et al. Heterogeneous nanodomain electrolytes for ultra-long-life all-solid-state lithium-metal batteries.
                   Adv. Funct. Mater. 2022, 32, 2204778.  DOI
               37.      Shi, J.; Nguyen, H.; Chen, Z.; et al. Nanostructured block copolymer single-ion conductors for low-temperature, high-voltage and fast
                   charging lithium-metal batteries. Energy. Mater. 2023, 3, 300036.  DOI
               38.      Yang, X.; Huang, Y.; Li, J.; et al. Understanding of working mechanism of lithium difluoro(oxalato) borate in Li||NCM85 battery with
                   enhanced cyclic stability. Energy. Mater. 2023, 3, 300029.  DOI
               39.      Zheng, Y.; Yang, N.; Gao, R.; et al. “Tree-trunk” design for flexible quasi-solid-state electrolytes with hierarchical ion-channels
                   enabling ultralong-life lithium-metal batteries. Adv. Mater. 2022, 34, e2203417.  DOI
               40.      Qiu, C.; Odarchenko, Y.; Meng, Q.; et al. Resolving the effect of oxygen vacancies on Co nanostructures using soft XAS/X-PEEM.
                   ACS. Catal. 2022, 12, 9125-34.  DOI  PubMed  PMC
               41.      Oversteeg CH, Doan HQ, de Groot FM, Cuk T. In situ X-ray absorption spectroscopy of transition metal based water oxidation
                   catalysts. Chem. Soc. Rev. 2017, 46, 102-25.  DOI  PubMed
               42.      Maugeri, L.; Simonelli, L.; Iadecola, A.; et al. Temperature dependent local structure of LiCoO  nanoparticles determined by Co
                                                                                   2
   108   109   110   111   112   113   114   115   116   117   118