Page 105 - Read Online
P. 105
Page 36 of 64 Rehman et al. Energy Mater 2024;4:400068 https://dx.doi.org/10.20517/energymater.2024.06
Antimony-based anode materials
Antimony-based oxides
Octahedral Sb O 3 Hydrothermal 53.3 435.6 50 100 NaClO /PC/FEC [123]
4
2
Sb O @Sb single-step dealloying 67.9 659 200 29.7 A NaClO /PC/FEC [125]
2 3 1 4
g
Sb/Sb O @NCNFs electrospinning and carbon thermal 69.9 527.3 100 100 NaClO /EC/DMC [126]
2 3 4
reduction
Sb O @Sb Dealloying/oxidation 79.8 526.2 150 1,000 NaPF /EC/DEC/FEC [127]
2 3 6
Sb O NPs@C Hydrothermal 40.2 239 170 1,000 NaClO /EC/DEC/FEC [128]
6
4
13
Sb O -CNT- Hydrothermal 46.9 360 100 100 NaClO /PC/FEC [130]
2 3 4
Graphene aerogel
Sb O -EGO Wet chemical - 345 100 100 NaClO /PC/DMC/FEC [129]
2 3 4
Antimony-based sulfides
I-S@MCNTs Solvothermal - 400 1,000 400 NaClO / EC/ DEC/FEC [133]
4
Sb S /SCS Solvothermal 61.27 455.8 100 100 NaClO4/PC/FEC [131]
2 3
Sb S /CS Electrospinning/hydrothermal 61 321 200 200 NaClO4/PC/EC /FEC [132]
2 3
α-Sb S -CuSbS 2 Closed-space sublimation 82.19 506.7 50 50 NaCF SO in diglyme [208 ]
3
3
2 3
Sb S @FeS Solvothermal method 82.4 534.8 1,000 5,000 NaCF SO in DEGDME [134]
2 3 2 3 3
Sb/CNTs Electrochemical desulfurization 71 510 200 100 NaClO /PC/FEC [209 ]
4
@SnS@C Hydrothermal/calcination 79.0 442 200 1,000 NaClO /EC/DMC/FEC [135]
Sb S 3 4
2
Sb S @m-Ti C T Wet Chemical - 156 100 100 NaClO /EC/PC/FEC [136]
2 3 3 2 x 4
Sb S @NCR Carrboniazation/gas-phase sulfuration 67.8 208 100 200 NaClO /EC/DMC/FEC [210]
4
2 3
S /rGO Hydrothermal/sulfidation 80.6 162.1. 1,100 5,000 NaClO /EC/DEC [138]
MoS @Sb 2 3 4
2
NF-Sb S @rGO Hydrothermal 72.6 544.8 200 100 NaClO / PC/EC/FEC [211]
2 3 4
-1
Sb S /S@S-doped Template assisted/coupling reaction 63.5 310 500 1 A g NaClO 4 [212]
2 3
carbon EC/DEC/DMC/FEC
Antimony-based selenides
α-Sb Se /C Ball milling 65.7 378 50 50 NaClO /EC/PC/FEC [141]
2 3 4
ZnS/Sb S @NC Solvothermal 67.9 511.4 450 1,000 NaPF /diEGME [213]
2 3 6
Sb Se /CNT Ball milling 78.9 428 200 50 NaClO /EC/PC/FEC [143]
4
2
3
Sb Se /rGO Solvothermal 67.3 511 50 500 NaClO /EC/DMC/FEC [144]
2 3 4
Sb Se @rGO@NC Solvothermal 56.0 288.5 100 50 NaClO /DEC/EC/FEC [145]
2 3 4
Sb Se /Ti C T Electrostatic Self-assembly method 87.1 568.9 100 100 NaClO / PC [146]
3 2 x
3
4
2
Phosphorous-based anode materials
NPRP@RGO Typical redox reaction 78.5 1,249.7 150 173.261 NaClO /PC/FEC [150]
4
P-SPAN Ball milling 71.7 1,355 100 520 NaClO /EC/DEC/FEC [151]
4
RP/Graphite Wet milling/dry milling ≈ 70.0 1,354 100 - NaPF /EC/DEC/FEC [152]
6
NRP-rGO Phosphorus-amine-based method 61.2 662 1,400 2,000 NaClO /EC/DEC/FEC [154]
4
RP-Porous C Ball milling 87.3 1,070 200 400 NaClO /EC/DEC/FEC [153]
4
P@AC@PPy VDC/interfacial polymerization - 484 200 200 NaClO /EC/DEC/FEC [155]
4
RP/CS vaporization-condensation 49.3 1,027 2,000 4,000 HClO4/EC/DMC/FEC [156]
P @CNF Vaporization-condensation - 1,850 500 100 NaPF /EC/DEC/FEC [157]
6
red
RP@CNC Phosphorus-amine method/evacuation- 67.5 1,363 150 100 NaClO /EC/DEC/FEC [214]
4
filling process
Sb -RP /C Ball milling ≈ 90 1,650 70 0.333 C NaPF /PC/FEC [215]
x (70-x) 30 6
WDC/CNTs@RP Vaporization-condensation 81.21 636.3 700 1 C NaClO /EC/DMC/FEC [159]
4
RP- Blending/grinding 65 371.6 100 500 NaPF /EC/DEC/FEC [158]
6
MWCNT/MXene