Page 195 - Read Online
P. 195

Cui et al. Energy Mater 2023;3:300023  https://dx.doi.org/10.20517/energymater.2022.90  Page 11 of 12

               Consent for publication
               Not applicable.


               Copyright
               © The Author(s) 2023.


               REFERENCES
               1.       Xu C, Li B, Du H, Kang F. Energetic zinc ion chemistry: the rechargeable zinc ion battery. Angew Chem Int Ed 2012;51:933-5.  DOI
                   PubMed
               2.       Hwang B, Cheong JY, Matteini P, Yun TG. Highly efficient phthalocyanine based aqueous Zn-ion flexible-batteries. Mater Lett
                   2022;306:130954.  DOI
               3.       Yang W, Yang Y, Yang H, Zhou H. Regulating water activity for rechargeable zinc-ion batteries: progress and perspective. ACS
                   Energy Lett 2022;7:2515-30.  DOI
               4.       Zhang Y, Huang R, Wang X, et al. Facile large-scale preparation of vanadium pentoxide-polypyrrole composite for aqueous zinc-ion
                   batteries. J Alloys Compd 2022;907:164434.  DOI
               5.       Chen R, Luo R, Huang Y, Wu F, Li L. Advanced high energy density secondary batteries with multi-electron reaction materials. Adv
                   Sci 2016;3:1600051.  DOI  PubMed  PMC
               6.       Tang H, Peng Z, Wu L, et al. Vanadium-based cathode materials for rechargeable multivalent batteries: challenges and opportunities.
                   Electrochem Energy Rev 2018;1:169-99.  DOI
               7.       Wan F, Niu Z. Design strategies for vanadium-based aqueous zinc-ion batteries. Angew Chem Int Ed 2019;58:16358-67.  DOI
                   PubMed
               8.       Liu N, Li B, He Z, Dai L, Wang H, Wang L. Recent advances and perspectives on vanadium- and manganese-based cathode materials
                   for aqueous zinc ion batteries. J Energy Chem 2021;59:134-59.  DOI
               9.       Yuan Z, Chen X, Liu X, Feng C. Synthesis of Zn V O (OH) ·2H O microspheres as novel anode material for lithium-ion battery
                                                               2
                                                      2
                                                    3
                                                            2
                                                        7
                   application. Ionics 2020;26:1703-10.  DOI
               10.      Bulbul B, Beyaz S, Akyol M, Ekicibil A. Simple manufacturing and metal type-dependent properties of M (OH) V O ·nH O (M; Co,
                                                                                        3   2  2  7  2
                   Ni, Cu, Zn) nanostructures. Nanochem Res 2022:2;154-67.  DOI
               11.      Du Y, Liu X, Wang X. et al. Freestanding strontium vanadate/carbon nanotube films for long-life aqueous zinc-ion batteries. Rare
                   Metals 2021;41:415-24.  DOI
               12.      Li L, Jia T, Pei X, et al. A study on the properties of hexagonal Zn (OH) V O ·2H O as cathode material for zinc-ion battery. Ionics
                                                                      7
                                                                         2
                                                                    2
                                                               3
                                                                   2
                   2022;28:283-93.  DOI
               13.      Xia C, Guo J, Lei Y, Liang H, Zhao C, Alshareef HN. Rechargeable aqueous zinc-ion battery based on porous framework zinc
                   pyrovanadate intercalation cathode. Adv Mater 2018;30:1705580.  DOI
               14.      Wang F, Wang Q, Dong S, Wang S. An aqueous zinc pyrovanadate nanowire cathode doped by nitrogen-doped carbon from PANI
                   calcination for capacity and stability enhancement. Ionics 2022;28:295-305.  DOI
               15.      Zhao S, Guo J, Jiang F, Su Q, Du G. Porous CoFe O  nanowire arrays on carbon cloth as binder-free anodes for flexible lithium-ion
                                                    2  4
                   batteries. Mater Res Bull 2016;79:22-8.  DOI
               16.      Storan D, Ahad SA, Forde R, et al. Silicon nanowire growth on carbon cloth for flexible Li-ion battery anodes. Mater Today Energy
                   2022;27:101030.  DOI
               17.      Corpuz RD, Juan-Corpuz LM, Nguyen MT, et al. Binder-free α-MnO  nanowires on carbon cloth as cathode material for zinc-ion
                                                                  2
                   batteries. Int J Mol Sci 2020;21:3113.  DOI  PubMed  PMC
               18.      De Juan-corpuz LM, Corpuz RD, Somwangthanaroj A, et al. Binder-free centimeter-long V O  nanofibers on carbon cloth as cathode
                                                                               2  5
                   material for zinc-ion batteries. Energies 2020;13:31.  DOI
               19.      Jia X, Liu C, Neale ZG, Yang J, Cao G. Active materials for aqueous zinc ion batteries: synthesis, crystal structure, morphology, and
                   electrochemistry. Chem Rev 2020;120:7795-866.  DOI
               20.      Biesinger MC, Lau LW, Gerson AR, Smart RS. Resolving surface chemical states in XPS analysis of first row transition metals,
                   oxides and hydroxides: Sc, Ti, V, Cu and Zn. Appl Surf Sci 2010;257:887-98.  DOI
               21.      Xia C, Guo J, Li P, Zhang X, Alshareef HN. Highly stable aqueous zinc-ion storage using a layered calcium vanadium oxide bronze
                   cathode. Angew Chem Int Ed 2018;57:3943-8.  DOI
               22.      Chen X, Wang L, Li H, Cheng F, Chen J. Porous V O  nanofibers as cathode materials for rechargeable aqueous zinc-ion batteries. J
                                                     2  5
                   Energy Chem 2019;38:20-5.  DOI
               23.      Alfaruqi MH, Mathew V, Song J, et al. Electrochemical zinc intercalation in lithium vanadium oxide: a high-capacity zinc-ion battery
                   cathode. Chem Mater 2017;29:1684-94.  DOI
               24.      Kim HJ, Jo JH, Choi JU, Voronina N, Myung S. KV O  with a large interlayer as a viable cathode material for zinc-ion batteries. J
                                                      3
                                                        8
                   Power Sources 2020;478:229072.  DOI
               25.      Sambandam B, Soundharrajan V, Kim S, et al. Aqueous rechargeable Zn-ion batteries: an imperishable and high-energy Zn V O   7
                                                                                                        2
                                                                                                      2
                   nanowire cathode through intercalation regulation. J Mater Chem A 2018;6:3850-6.  DOI
   190   191   192   193   194   195   196   197   198   199   200