Page 167 - Read Online
P. 167
Liu et al. Energy Mater 2023;3:300011 https://dx.doi.org/10.20517/energymater.2022.68 Page 9 of 10
3. Johnson L, Li C, Liu Z, et al. The role of LiO solubility in O reduction in aprotic solvents and its consequences for Li-O batteries.
2
2
2
Nat Chem 2014;6:1091-9. DOI PubMed
4. Lyu Z, Zhou Y, Dai W, et al. Recent advances in understanding of the mechanism and control of Li O formation in aprotic Li-O 2
2
2
batteries. Chem Soc Rev 2017;46:6046-72. DOI
5. Chi X, Li M, Di J, et al. A highly stable and flexible zeolite electrolyte solid-state Li-air battery. Nature 2021;592:551-7. DOI
PubMed
6. Aurbach D, Mccloskey BD, Nazar LF, Bruce PG. Advances in understanding mechanisms underpinning lithium-air batteries. Nat
Energy 2016;1:1-11. DOI
7. Lim HD, Lee B, Bae Y, et al. Reaction chemistry in rechargeable Li-O batteries. Chem Soc Rev 2017;46:2873-88. DOI
2
8. Lau S, Archer LA. Nucleation and growth of lithium peroxide in the Li-O battery. Nano Lett 2015;15:5995-6002. DOI PubMed
2
9. Liu L, Liu Y, Wang C, et al. Li O formation electrochemistry and its influence on oxygen reduction/evolution reaction kinetics in
2 2
aprotic Li-O batteries. Small Methods 2022;6:e2101280. DOI
2
10. Matsuda S, Yasukawa E, Kameda T, et al. Carbon-black-based self-standing porous electrode for 500 Wh/kg rechargeable lithium-
oxygen batteries. Cell Rep Phys Sci 2021;2:100506. DOI
11. Zhao S, Zhang L, Zhang G, Sun H, Yang J, Lu S. Failure analysis of pouch-type Li-O batteries with superior energy density. J Energy
2
Chem 2020;45:74-82. DOI
12. Dou Y, Wang X, Wang D, et al. Tuning the structure and morphology of Li O by controlling the crystallinity of catalysts for Li-O
2 2 2
batteries. Chem Eng J 2021;409:128145. DOI
13. Song LN, Zhang W, Wang Y, et al. Tuning lithium-peroxide formation and decomposition routes with single-atom catalysts for
lithium-oxygen batteries. Nat Commun 2020;11:2191. DOI PubMed PMC
14. Liu Y, Wang K, Peng X, et al. Formation/decomposition of Li O induced by porous NiCeO nanorod catalysts in aprotic lithium-
x
2
2
oxygen batteries. ACS Appl Mater Interfaces 2022;14:16214-21. DOI PubMed
15. Chen C, Xu S, Kuang Y, et al. Nature-inspired tri-pathway design enabling high-performance flexible Li-O batteries. Adv Energy
2
Mater 2019;9:1802964. DOI
16. Lin X, Yuan R, Cai S, et al. An open-structured matrix as oxygen cathode with high catalytic activity and large Li O accommodations
2 2
for lithium-oxygen batteries. Adv Energy Mater 2018;8:1800089. DOI
17. Huang Z, Deng Z, Shen Y, et al. A Li-O battery cathode with vertical mass/charge transfer pathways. J Mater Chem A 2019;7:3000-5.
2
DOI
18. Liu L, Ma T, Fang W, et al. Facile fabrication of Ag nanocrystals encapsulated in nitrogen-doped fibrous carbon as an efficient catalyst
for lithium oxygen batteries. Energy Environ Mater 2021;4:239-45. DOI
19. Peng X, Wang C, Liu Y, et al. Critical advances in re-engineering the cathode-electrolyte interface in alkali metal-oxygen batteries.
Energy Mater 2022;1:100011. DOI
20. Tan P, Jiang H, Zhu X, et al. Advances and challenges in lithium-air batteries. Appl Energy 2017;204:780-806. DOI
21. Thotiyl MM, Freunberger SA, Peng Z, Bruce PG. The carbon electrode in nonaqueous Li-O cells. J Am Chem Soc 2013;135:494-500.
2
DOI
22. Jung J, Cho S, Nam JS, Kim I. Current and future cathode materials for non-aqueous Li-air (O ) battery technology - a focused review.
2
Energy Stor Mater 2020;24:512-28. DOI
23. Liu L, Guo H, Fu L, et al. Critical advances in ambient air operation of nonaqueous rechargeable Li-air batteries. Small
2021;17:e1903854. DOI PubMed
24. Liu L, Hou Y, Wang J, et al. Nanofibrous Co O /PPy hybrid with synergistic effect as bifunctional catalyst for lithium-oxygen
3
4
batteries. Adv Mater Interfaces 2016;3:1600030. DOI
25. Chen Y, Freunberger SA, Peng Z, Fontaine O, Bruce PG. Charging a Li-O battery using a redox mediator. Nat Chem 2013;5:489-94.
2
DOI PubMed
26. Lim HD, Song H, Kim J, et al. Superior rechargeability and efficiency of lithium-oxygen batteries: hierarchical air electrode
architecture combined with a soluble catalyst. Angew Chem Int Ed 2014;53:3926-31. DOI PubMed
27. Zhang L, Zhang D, Zhang J, et al. Design of meso-TiO @MnO -CeO /CNTs with a core-shell structure as DeNO catalysts: promotion
2 x x x
of activity, stability and SO -tolerance. Nanoscale 2013;5:9821-9. DOI PubMed
2
28. Demir E, Akbayrak S, Önal AM, Özkar S. Nanoceria-supported ruthenium(0) nanoparticles: highly active and stable catalysts for
hydrogen evolution from water. ACS Appl Mater Interfaces 2018;10:6299-308. DOI PubMed
29. Sa YJ, Kwon K, Cheon JY, Kleitz F, Joo SH. Ordered mesoporous Co O spinels as stable, bifunctional, noble metal-free oxygen
4
3
electrocatalysts. J Mater Chem A 2013;1:9992-10001. DOI
30. Dong Y, He K, Yin L, Zhang A. A facile route to controlled synthesis of Co O nanoparticles and their environmental catalytic
3 4
properties. Nanotechnology 2007;18:435602. DOI
31. Liu X, Zhao L, Xu H, et al. Tunable cationic vacancies of cobalt oxides for efficient electrocatalysis in Li-O batteries. Adv Energy
2
Mater 2020;10:2001415. DOI
32. Gopiraman M, Karvembu R, Kim IS. Highly active, selective, and reusable RuO /SWCNT Catalyst for heck olefination of aryl
2
halides. ACS Catal 2014;4:2118-29. DOI
33. Kim Y, Park JH, Kim JG, et al. Ruthenium oxide incorporated one-dimensional cobalt oxide composite nanowires as lithium-oxygen
battery cathode catalysts. ChemCatChem 2017;9:3554-62. DOI