Page 167 - Read Online
P. 167

Liu et al. Energy Mater 2023;3:300011  https://dx.doi.org/10.20517/energymater.2022.68  Page 9 of 10

               3.       Johnson L, Li C, Liu Z, et al. The role of LiO  solubility in O  reduction in aprotic solvents and its consequences for Li-O  batteries.
                                                                                                   2
                                                           2
                                                 2
                   Nat Chem 2014;6:1091-9.  DOI  PubMed
               4.       Lyu Z, Zhou Y, Dai W, et al. Recent advances in understanding of the mechanism and control of Li O  formation in aprotic Li-O   2
                                                                                      2
                                                                                       2
                   batteries. Chem Soc Rev 2017;46:6046-72.  DOI
               5.       Chi X, Li M, Di J, et al. A highly stable and flexible zeolite electrolyte solid-state Li-air battery. Nature 2021;592:551-7.  DOI
                   PubMed
               6.       Aurbach D, Mccloskey BD, Nazar LF, Bruce PG. Advances in understanding mechanisms underpinning lithium-air batteries. Nat
                   Energy 2016;1:1-11.  DOI
               7.       Lim HD, Lee B, Bae Y, et al. Reaction chemistry in rechargeable Li-O  batteries. Chem Soc Rev 2017;46:2873-88.  DOI
                                                                2
               8.       Lau S, Archer LA. Nucleation and growth of lithium peroxide in the Li-O  battery. Nano Lett 2015;15:5995-6002.  DOI  PubMed
                                                                  2
               9.       Liu L, Liu Y, Wang C, et al. Li O  formation electrochemistry and its influence on oxygen reduction/evolution reaction kinetics in
                                        2  2
                   aprotic Li-O  batteries. Small Methods 2022;6:e2101280.  DOI
                           2
               10.      Matsuda S, Yasukawa E, Kameda T, et al. Carbon-black-based self-standing porous electrode for 500 Wh/kg rechargeable lithium-
                   oxygen batteries. Cell Rep Phys Sci 2021;2:100506.  DOI
               11.      Zhao S, Zhang L, Zhang G, Sun H, Yang J, Lu S. Failure analysis of pouch-type Li-O  batteries with superior energy density. J Energy
                                                                          2
                   Chem 2020;45:74-82.  DOI
               12.      Dou Y, Wang X, Wang D, et al. Tuning the structure and morphology of Li O  by controlling the crystallinity of catalysts for Li-O
                                                                     2  2                                2
                   batteries. Chem Eng J 2021;409:128145.  DOI
               13.      Song LN, Zhang W, Wang Y, et al. Tuning lithium-peroxide formation and decomposition routes with single-atom catalysts for
                   lithium-oxygen batteries. Nat Commun 2020;11:2191.  DOI  PubMed  PMC
               14.      Liu Y, Wang K, Peng X, et al. Formation/decomposition of Li O  induced by porous NiCeO  nanorod catalysts in aprotic lithium-
                                                                                 x
                                                              2
                                                             2
                   oxygen batteries. ACS Appl Mater Interfaces 2022;14:16214-21.  DOI  PubMed
               15.      Chen C, Xu S, Kuang Y, et al. Nature-inspired tri-pathway design enabling high-performance flexible Li-O  batteries. Adv Energy
                                                                                           2
                   Mater 2019;9:1802964.  DOI
               16.      Lin X, Yuan R, Cai S, et al. An open-structured matrix as oxygen cathode with high catalytic activity and large Li O  accommodations
                                                                                            2  2
                   for lithium-oxygen batteries. Adv Energy Mater 2018;8:1800089.  DOI
               17.      Huang Z, Deng Z, Shen Y, et al. A Li-O  battery cathode with vertical mass/charge transfer pathways. J Mater Chem A 2019;7:3000-5.
                                             2
                   DOI
               18.      Liu L, Ma T, Fang W, et al. Facile fabrication of Ag nanocrystals encapsulated in nitrogen-doped fibrous carbon as an efficient catalyst
                   for lithium oxygen batteries. Energy Environ Mater 2021;4:239-45.  DOI
               19.      Peng X, Wang C, Liu Y, et al. Critical advances in re-engineering the cathode-electrolyte interface in alkali metal-oxygen batteries.
                   Energy Mater 2022;1:100011.  DOI
               20.      Tan P, Jiang H, Zhu X, et al. Advances and challenges in lithium-air batteries. Appl Energy 2017;204:780-806.  DOI
               21.      Thotiyl MM, Freunberger SA, Peng Z, Bruce PG. The carbon electrode in nonaqueous Li-O  cells. J Am Chem Soc 2013;135:494-500.
                                                                              2
                   DOI
               22.      Jung J, Cho S, Nam JS, Kim I. Current and future cathode materials for non-aqueous Li-air (O ) battery technology - a focused review.
                                                                                2
                   Energy Stor Mater 2020;24:512-28.  DOI
               23.      Liu L, Guo H, Fu L, et al. Critical advances in ambient air operation of nonaqueous rechargeable Li-air batteries. Small
                   2021;17:e1903854.  DOI  PubMed
               24.      Liu L, Hou Y, Wang J, et al. Nanofibrous Co O /PPy hybrid with synergistic effect as bifunctional catalyst for lithium-oxygen
                                                  3
                                                    4
                   batteries. Adv Mater Interfaces 2016;3:1600030.  DOI
               25.      Chen Y, Freunberger SA, Peng Z, Fontaine O, Bruce PG. Charging a Li-O  battery using a redox mediator. Nat Chem 2013;5:489-94.
                                                                   2
                   DOI  PubMed
               26.      Lim HD, Song H, Kim J, et al. Superior rechargeability and efficiency of lithium-oxygen batteries: hierarchical air electrode
                   architecture combined with a soluble catalyst. Angew Chem Int Ed 2014;53:3926-31.  DOI  PubMed
               27.      Zhang L, Zhang D, Zhang J, et al. Design of meso-TiO @MnO -CeO /CNTs with a core-shell structure as DeNO  catalysts: promotion
                                                      2     x   x                           x
                   of activity, stability and SO -tolerance. Nanoscale 2013;5:9821-9.  DOI  PubMed
                                     2
               28.      Demir E, Akbayrak S, Önal AM, Özkar S. Nanoceria-supported ruthenium(0) nanoparticles: highly active and stable catalysts for
                   hydrogen evolution from water. ACS Appl Mater Interfaces 2018;10:6299-308.  DOI  PubMed
               29.      Sa YJ, Kwon K, Cheon JY, Kleitz F, Joo SH. Ordered mesoporous Co O spinels as stable, bifunctional, noble metal-free oxygen
                                                                    4
                                                                  3
                   electrocatalysts. J Mater Chem A 2013;1:9992-10001.  DOI
               30.      Dong Y, He K, Yin L, Zhang A. A facile route to controlled synthesis of Co O  nanoparticles and their environmental catalytic
                                                                       3  4
                   properties. Nanotechnology 2007;18:435602.  DOI
               31.      Liu X, Zhao L, Xu H, et al. Tunable cationic vacancies of cobalt oxides for efficient electrocatalysis in Li-O  batteries. Adv Energy
                                                                                           2
                   Mater 2020;10:2001415.  DOI
               32.      Gopiraman M, Karvembu R, Kim IS. Highly active, selective, and reusable RuO /SWCNT Catalyst for heck olefination of aryl
                                                                          2
                   halides. ACS Catal 2014;4:2118-29.  DOI
               33.      Kim Y, Park JH, Kim JG, et al. Ruthenium oxide incorporated one-dimensional cobalt oxide composite nanowires as lithium-oxygen
                   battery cathode catalysts. ChemCatChem 2017;9:3554-62.  DOI
   162   163   164   165   166   167   168   169   170   171   172