Page 110 - Read Online
P. 110
Park et al. Energy Mater 2023;3:300005 https://dx.doi.org/10.20517/energymater.2022.65 Page 11 of 13
(SEI) on the lithium metal surface in lithium metal batteries (LMBs). ACS Appl Energy Mater 2020;3:10560-67. DOI
11. Hu Z, Zhang S, Dong S, et al. Poly(ethyl α-cyanoacrylate)-based artificial solid electrolyte interphase layer for enhanced interface
stability of Li metal anodes. Chem Mater 2017;29:4682-89. DOI
12. Schwager P, Bülter H, Plettenberg I, Wittstock. Review of local in situ probing techniques for the interfaces of lithium-ion and lithium-
oxygen batteries. Energy Technol 2017;4:1472-85. DOI
13. Liu T, Lin L, Bi X, et al. In situ quantification of interphasial chemistry in Li-ion battery. Nat Nanotechnol 2019;14:50. DOI
14. Diddens D, Appiah WA, Marbrouk Y, Heuer A, Vegge T, Bhowmik A. Modeling the solid electrolyte interphase: machine learning as
a game changer? Adv Mater Interfaces 2022;9:2101734. DOI
15. Lee HJ, Kim HR, Lee KJ, et al. Crack healing mechanism by application of stack pressure to the carbon-based composite anode of an
all-solid-state battery. ACS Appl Energy Mater 2022;5:5227-35. DOI
16. Liu L, Guan P. Phase-field modeling of solid electrolyte interphase (SEI) evolution: considering cracking and dissolution during
battery cycling. ECS Trans 2018;85:1041-51. DOI
17. Chen L, Fan X, Ji X, Chen J, Hou S, Wang C. High-energy Li metal battery with lithiated host. Joule 2019;3:732-44. DOI
18. Kang D, Jin D, Moon J, et al. AgNO -preplanted Li metal powder electrode: preliminary formation of lithiophilic Ag and a Li N-rich
3 3
solid electrolyte interphase. Chem Eng J 2023;452:139409. DOI
19. Kang DW, Moon J, Choi HY, Shin HC, Kim BG. Stable cycling and uniform lithium deposition in anode-free lithium-metal batteries
enabled by a high-concentration dual-salt electrolyte with high LiNO content. J Power Sources 2021;490:229504. DOI
3
20. Choi SH, Hyeon YH, Shin HR, et al. Critical role of surface craters for improving the reversibility of Li metal storage in porous carbon
frameworks. Nano Energy 2021;88:106243. DOI
21. Lee J, Choi SH, Qutaish H, et al. Structurally stabilized lithium-metal anode via surface chemistry engineering. Energy Stor Mater
2021;37:315-24. DOI
22. Kim J, Lee J, Yun J, et al. Functionality of dual-phase lithium storage in a porous carbon host for lithium-metal anode. Adv Funct
Mater 2020;30:1910538. DOI
23. Qutaish H, Suh JH, Han SA, Kim S, Park MS, Kim JH. Regulation of ionic conductivity and lithium affinity of porous carbon
framework in Li metal batteries through oxidized nitrogen groups. Appl Surf Sci 2022;605:154757. DOI
24. Yang T, Sun Y, Qian T, et al. Lithium dendrite inhibition via 3D porous lithium metal anode accompanied by inherent SEI layer.
Energy Stor Mater 2020;26:385-90. DOI
25. An D. Film formation on lithium anode in propylene carbonate. J Electrochem Soc 1970;117:C248-&. DOI
26. Peled E. The Electrochemical behavior of alkali and alkaline earth metals in nonaqueous battery systems-the solid electrolyte
interphase model. J Electrochem Soc 1979;126:2047-51. DOI
27. An SJ, Li J, Daniel C, Mohanty D, Nagpure S, Wood D. The state of understanding of the lithium-ion-battery graphite solid electrolyte
interphase (SEI) and its relationship to formation cycling. Carbon 2016;105:57-76. DOI
28. Spotte-Smith EWC, Kam RL, Barter D, et al. Toward a mechanistic model of solid-electrolyte interphase formation and evolution in
lithium-ion batteries. ACS Energy Lett 2022;7:1446-1453. DOI
29. Sun SY, Yao N, Jin CB, et al. The crucial role of electrode potential of a working anode in dictating the structural evolution of solid
electrolyte interphase. Angew Chem Int Ed 2022;61:e202208743. DOI
+
30. Bedrov D, Borodin O, Hooper JB. Li transport and mechanical properties of model solid electrolyte interphases (SEI): insight from
atomistic molecular dynamics simulations. J Phys Chem C 2017;121:16098-109. DOI
31. Yu Q, Jiang K, Yu C, et al. Recent progress of composite solid polymer electrolytes for all-solid-state lithium metal batteries. Chin
Chem Lett 2021;32:2659-78. DOI
32. Wu M, Li Y, Liu X, Yang S, Ma J, Dou S. Perspective on solid-electrolyte interphase regulation for lithium metal batteries. SmartMat
2021;2:5-11. DOI
33. Liu G, Lu W. A Model of concurrent lithium dendrite growth, SEI growth, SEI penetration and regrowth. J Electrochem Soc
2017;164:A1826-33. DOI
34. Li C, Li Y, Chen Z, Zhou Y, Bai F, Li T. Hybrid diluents enable localized high-concentration electrolyte with balanced performance
for high-voltage lithium-metal batteries. Chin Chem Lett 2022:107852. DOI
35. Xie J, Sun S, Chen X, et al. Fluorinating the Solid electrolyte interphase by rational molecular design for practical lithium-metal
batteries. Angew Chem Int Ed 2022;61:e202204776. DOI
36. Ma X, Shen X, Chen X, et al. The origin of fast lithium-ion transport in the inorganic solid electrolyte interphase on lithium metal
anodes. Small Struct 2022;3:2200071. DOI
37. Vu TT, Kim BG, Kim JH, Moon J. Suppression of dendritic lithium-metal growth through concentrated dual-salt electrolyte and its
accurate prediction. J Mater Chem A 2021;9:22833-41. DOI
38. Wang X, Zeng W, Hong L, et al. Stress-driven lithium dendrite growth mechanism and dendrite mitigation by electroplating on soft
substrates. Nat Energy 2018;3:227-35. DOI
39. Hao F, Verma A, Mukherjee PP. Mechanistic insight into dendrite-SEI interactions for lithium metal electrodes. J Mater Chem A
2018;6:19664-74. DOI
40. Pathak R, Chen K, Gurung A, et al. Fluorinated hybrid solid-electrolyte-interphase for dendrite-free lithium deposition. Nat Commun
2020;11:93. DOI
41. Cheng X, Yan C, Zhang X, Liu H, Zhang Q. Electronic and ionic channels in working interfaces of lithium metal anodes. ACS Energy