Page 110 - Read Online
P. 110

Park et al. Energy Mater 2023;3:300005  https://dx.doi.org/10.20517/energymater.2022.65  Page 11 of 13

                   (SEI) on the lithium metal surface in lithium metal batteries (LMBs). ACS Appl Energy Mater 2020;3:10560-67.  DOI
               11.      Hu Z, Zhang S, Dong S, et al. Poly(ethyl α-cyanoacrylate)-based artificial solid electrolyte interphase layer for enhanced interface
                   stability of Li metal anodes. Chem Mater 2017;29:4682-89.  DOI
               12.      Schwager P, Bülter H, Plettenberg I, Wittstock. Review of local in situ probing techniques for the interfaces of lithium-ion and lithium-
                   oxygen batteries. Energy Technol 2017;4:1472-85.  DOI
               13.      Liu T, Lin L, Bi X, et al. In situ quantification of interphasial chemistry in Li-ion battery. Nat Nanotechnol 2019;14:50.  DOI
               14.      Diddens D, Appiah WA, Marbrouk Y, Heuer A, Vegge T, Bhowmik A. Modeling the solid electrolyte interphase: machine learning as
                   a game changer? Adv Mater Interfaces 2022;9:2101734.  DOI
               15.      Lee HJ, Kim HR, Lee KJ, et al. Crack healing mechanism by application of stack pressure to the carbon-based composite anode of an
                   all-solid-state battery. ACS Appl Energy Mater 2022;5:5227-35.  DOI
               16.      Liu L, Guan P. Phase-field modeling of solid electrolyte interphase (SEI) evolution: considering cracking and dissolution during
                   battery cycling. ECS Trans 2018;85:1041-51.  DOI
               17.      Chen L, Fan X, Ji X, Chen J, Hou S, Wang C. High-energy Li metal battery with lithiated host. Joule 2019;3:732-44.  DOI
               18.      Kang D, Jin D, Moon J, et al. AgNO -preplanted Li metal powder electrode: preliminary formation of lithiophilic Ag and a Li N-rich
                                           3                                                         3
                   solid electrolyte interphase. Chem Eng J 2023;452:139409.  DOI
               19.      Kang DW, Moon J, Choi HY, Shin HC, Kim BG. Stable cycling and uniform lithium deposition in anode-free lithium-metal batteries
                   enabled by a high-concentration dual-salt electrolyte with high LiNO  content. J Power Sources 2021;490:229504.  DOI
                                                               3
               20.      Choi SH, Hyeon YH, Shin HR, et al. Critical role of surface craters for improving the reversibility of Li metal storage in porous carbon
                   frameworks. Nano Energy 2021;88:106243.  DOI
               21.      Lee J, Choi SH, Qutaish H, et al. Structurally stabilized lithium-metal anode via surface chemistry engineering. Energy Stor Mater
                   2021;37:315-24.  DOI
               22.      Kim J, Lee J, Yun J, et al. Functionality of dual-phase lithium storage in a porous carbon host for lithium-metal anode. Adv Funct
                   Mater 2020;30:1910538.  DOI
               23.      Qutaish H, Suh JH, Han SA, Kim S, Park MS, Kim JH. Regulation of ionic conductivity and lithium affinity of porous carbon
                   framework in Li metal batteries through oxidized nitrogen groups. Appl Surf Sci 2022;605:154757.  DOI
               24.      Yang T, Sun Y, Qian T, et al. Lithium dendrite inhibition via 3D porous lithium metal anode accompanied by inherent SEI layer.
                   Energy Stor Mater 2020;26:385-90.  DOI
               25.      An D. Film formation on lithium anode in propylene carbonate. J Electrochem Soc 1970;117:C248-&.  DOI
               26.      Peled E. The Electrochemical behavior of alkali and alkaline earth metals in nonaqueous battery systems-the solid electrolyte
                   interphase model. J Electrochem Soc 1979;126:2047-51.  DOI
               27.      An SJ, Li J, Daniel C, Mohanty D, Nagpure S, Wood D. The state of understanding of the lithium-ion-battery graphite solid electrolyte
                   interphase (SEI) and its relationship to formation cycling. Carbon 2016;105:57-76.  DOI
               28.      Spotte-Smith EWC, Kam RL, Barter D, et al. Toward a mechanistic model of solid-electrolyte interphase formation and evolution in
                   lithium-ion batteries. ACS Energy Lett 2022;7:1446-1453.  DOI
               29.      Sun SY, Yao N, Jin CB, et al. The crucial role of electrode potential of a working anode in dictating the structural evolution of solid
                   electrolyte interphase. Angew Chem Int Ed 2022;61:e202208743.  DOI
                                            +
               30.      Bedrov D, Borodin O, Hooper JB. Li  transport and mechanical properties of model solid electrolyte interphases (SEI): insight from
                   atomistic molecular dynamics simulations. J Phys Chem C 2017;121:16098-109.  DOI
               31.      Yu Q, Jiang K, Yu C, et al. Recent progress of composite solid polymer electrolytes for all-solid-state lithium metal batteries. Chin
                   Chem Lett 2021;32:2659-78.  DOI
               32.      Wu M, Li Y, Liu X, Yang S, Ma J, Dou S. Perspective on solid-electrolyte interphase regulation for lithium metal batteries. SmartMat
                   2021;2:5-11.  DOI
               33.      Liu G, Lu W. A Model of concurrent lithium dendrite growth, SEI growth, SEI penetration and regrowth. J Electrochem Soc
                   2017;164:A1826-33.  DOI
               34.      Li C, Li Y, Chen Z, Zhou Y, Bai F, Li T. Hybrid diluents enable localized high-concentration electrolyte with balanced performance
                   for high-voltage lithium-metal batteries. Chin Chem Lett 2022:107852.  DOI
               35.      Xie J, Sun S, Chen X, et al. Fluorinating the Solid electrolyte interphase by rational molecular design for practical lithium-metal
                   batteries. Angew Chem Int Ed 2022;61:e202204776.  DOI
               36.      Ma X, Shen X, Chen X, et al. The origin of fast lithium-ion transport in the inorganic solid electrolyte interphase on lithium metal
                   anodes. Small Struct 2022;3:2200071.  DOI
               37.      Vu TT, Kim BG, Kim JH, Moon J. Suppression of dendritic lithium-metal growth through concentrated dual-salt electrolyte and its
                   accurate prediction. J Mater Chem A 2021;9:22833-41.  DOI
               38.      Wang X, Zeng W, Hong L, et al. Stress-driven lithium dendrite growth mechanism and dendrite mitigation by electroplating on soft
                   substrates. Nat Energy 2018;3:227-35.  DOI
               39.      Hao F, Verma A, Mukherjee PP. Mechanistic insight into dendrite-SEI interactions for lithium metal electrodes. J Mater Chem A
                   2018;6:19664-74.  DOI
               40.      Pathak R, Chen K, Gurung A, et al. Fluorinated hybrid solid-electrolyte-interphase for dendrite-free lithium deposition. Nat Commun
                   2020;11:93.  DOI
               41.      Cheng X, Yan C, Zhang X, Liu H, Zhang Q. Electronic and ionic channels in working interfaces of lithium metal anodes. ACS Energy
   105   106   107   108   109   110   111   112   113   114   115