Page 111 - Read Online
P. 111
Page 12 of 13 Park et al. Energy Mater 2023;3:300005 https://dx.doi.org/10.20517/energymater.2022.65
Lett 2018;3:1564-70. DOI
42. Hou Z, Zhang J, Wang W, Chen Q, Li B, Li C. Towards high-performance lithium metal anodes via the modification of solid
electrolyte interphases. J Energy Chem 2020;45:7-17. DOI
43. Momma T, Matsunaga M, Mukoyama D, Osaka T. Ac impedance analysis of lithium ion battery under temperature control. J Power
Sources 2012;216:304-7. DOI
44. Han B, Feng D, Li S, et al. Self-regulated phenomenon of inorganic artificial solid electrolyte interphase for lithium metal batteries.
Nano Lett 2020;20:4029-37. DOI
45. Liu L, Zhu M. Modeling of SEI layer growth and electrochemical impedance spectroscopy response using a thermal-electrochemical
model of Li-ion batteries. ECS Trans 2014;61:43-61. DOI
46. Vadhva P, Hu J, Johnson M, et al. Electrochemical impedance spectroscopy for all-solid-state batteries: theory, methods and future
outlook. ChemElectroChem 2021;8:1930-47. DOI
47. Peled E, Menkin S. Review SEI: past, present and future. J Electrochem Soc 2018;164:A1703-19. DOI
48. Kang DW, Park SS, Choi HJ, et al. One-dimensional porous Li-confinable hosts for high-rate and stable li-metal batteries. ACS Nano
2022;16:11892-901. DOI
49. Wenzel S, Sedlmaier S J, Dietrich C, Zeier W, Janek J. Interfacial reactivity and interphase growth of argyrodite solid electrolytes at
lithium metal anodes. Solid State Ion 2018;318:102-12. DOI
50. Guo R, Gallent BM. Li O solid electrolyte interphase: probing transport properties at the chemical potential of lithium. Chem Mater
2
2020;32:5525-33. DOI
51. Li C, Guo X, Gu L, Samuelis D, Maier J. Ionic space-charge depletion in lithium fluoride thin films on sapphire (0001) substrates. Adv
Funct Mater 2011;21:2901-05. DOI
52. Pan J, Zhang Q, Xiao X, Cheng Y, Qi Y. Design of nanostructured heterogeneous solid ionic coatings through a multiscale defect
model. ACS Appl Mater Interfaces 2016;8:5687-93. DOI
53. Lorger S, Usiskin R, Maier J. Transport and charge carrier chemistry in lithium oxide. J Electrochem Soc 2019;166:A2215-20. DOI
54. Muralidharan A, Chaudhari MI, Pratt LR, Rempe SB. Molecular dynamics of lithium ion transport in a model solid electrolyte
interphase. Sci Rep 2018;8:10736. DOI
+
55. Li W, Wu G, Araújo CM, et al. Li ion conductivity and diffusion mechanism in a-Li N and b-Li N. Energy Environ Sci 2010;3:1524-
3 3
30. DOI
56. Liu Y, Hu R, Zhang D, et al. Constructing Li-rich artificial SEI layer in alloy-polymer composite electrolyte to achieve high ionic
conductivity for all-solid-state lithium metal batteries. Adv Mater 2021;33:2004711. DOI
57. Chen C, Liang Q, Wang G, Liu D, Xiong X. Grain-boundary-rich artificial SEI layer for high-rate lithium metal anodes. Adv Funct
Mater 2021;32:2107249. DOI
58. Miyakawa S, Matsuda S, Tanibata N, et al. Computational studies on defect chemistry and Li-ion conductivity of spinel-type LiAl O 8
5
as coating material for Li-metal electrode. Sci Rep 2022;12:16672. DOI
59. Wang R, Han H, Liu F, et al. Sulfonated poly(vinyl alcohol) as an artificial solid electrolyte interfacial layer for Li metal anode.
Electrochim Acta 2022;406:139840. DOI
60. Luo Z, Li S, Yang L, et al. Interfacially redistributed charge for robust lithium metal anode. Nano Energy 2021;87:106212. DOI
61. Hu A, Chen W, Du X, et al. An artificial hybrid interphase for an ultrahigh-rate and practical lithium metal anode. Energy Environ Sci
2021;14:4115-24. DOI
62. Wang Z, Wang Y, Zhang Z, et al. Building artificial solid-electrolyte interphase with uniform intermolecular ionic bonds toward
dendrite-free lithium metal anodes. Adv Funct Mater 2020;30:2002414. DOI
63. Chen H, Pei A, Lin D, et al. Uniform high ionic conducting lithium sulfide protection layer for stable lithium metal anode. Adv Energy
Mater 2019;9:1900858. DOI
64. Hu J, Chen K, Li C. Nanostructured Li-rich fluoride coated by ionic liquid as high ion-conductivity solid electrolyte additive to
suppress dendrite growth at Li metal anode. ACS Appl Mater Interfaces 2018;10:34322-31. DOI
65. Wang Y, Liu F, Fan G, et al. Electroless formation of a fluorinated Li/Na hybrid interphase for robust lithium anodes. J Am Chem Soc
2021;143:2829-37. DOI
66. Li J, Dudney NJ, Nanda J, Liang C. Artificial solid electrolyte interphase to address the electrochemical degradation of silicon
electrodes. ACS Appl Mater Interfaces 2014;6:10083-88. DOI
67. Han SA, Qutaish H, Park MS, Moon J, Kim JH. Strategic approaches to the dendritic growth and interfacial reaction of lithium metal
anode. Chem Asian J 2021;16:4010-17. DOI
68. Yan C, Yao YX, Chen X, et al. Lithium nitrate solvation chemistry in carbonate electrolyte sustains high-voltage lithium metal
batteries. Angew Chem Int Ed 2018;57:14055-59. DOI
69. Liu YY, Lin DC, Li YZ, et al. Solubility-mediated sustained release enabling nitrate additive in carbonate electrolytes for stable
lithium metal anode. Nat Commun 2018;9:3656. DOI
70. Brown ZL, Heiskanen S, Lucht BL. Using triethyl phosphate to increase the solubility of LiNO in carbonate electrolytes for
3
improving the performance of the lithium metal anode. J Electrochem Soc 2019;166:A2523-27. DOI
71. Guo Y, Cheng J, Zeng J, et al. Li CO : insights into its blocking effect on Li-ion transfer in garnet composite electrolytes. ACS Appl
3
2
Energy Mater 2022;5:2853-61. DOI
72. Camacho-Forero LE, Balbuena PB. Exploring interfacial stability of solid-state electrolytes at the lithium-metal anode surface. J