Page 111 - Read Online
P. 111

Page 12 of 13             Park et al. Energy Mater 2023;3:300005  https://dx.doi.org/10.20517/energymater.2022.65

                   Lett 2018;3:1564-70.  DOI
               42.      Hou Z, Zhang J, Wang W, Chen Q, Li B, Li C. Towards high-performance lithium metal anodes via the modification of solid
                   electrolyte interphases. J Energy Chem 2020;45:7-17.  DOI
               43.      Momma T, Matsunaga M, Mukoyama D, Osaka T. Ac impedance analysis of lithium ion battery under temperature control. J Power
                   Sources 2012;216:304-7.  DOI
               44.      Han B, Feng D, Li S, et al. Self-regulated phenomenon of inorganic artificial solid electrolyte interphase for lithium metal batteries.
                   Nano Lett 2020;20:4029-37.  DOI
               45.      Liu L, Zhu M. Modeling of SEI layer growth and electrochemical impedance spectroscopy response using a thermal-electrochemical
                   model of Li-ion batteries. ECS Trans 2014;61:43-61.  DOI
               46.      Vadhva P, Hu J, Johnson M, et al. Electrochemical impedance spectroscopy for all-solid-state batteries: theory, methods and future
                   outlook. ChemElectroChem 2021;8:1930-47.  DOI
               47.      Peled E, Menkin S. Review SEI: past, present and future. J Electrochem Soc 2018;164:A1703-19.  DOI
               48.      Kang DW, Park SS, Choi HJ, et al. One-dimensional porous Li-confinable hosts for high-rate and stable li-metal batteries. ACS Nano
                   2022;16:11892-901.  DOI
               49.      Wenzel S, Sedlmaier S J, Dietrich C, Zeier W, Janek J. Interfacial reactivity and interphase growth of argyrodite solid electrolytes at
                   lithium metal anodes. Solid State Ion 2018;318:102-12.  DOI
               50.      Guo R, Gallent BM. Li O solid electrolyte interphase: probing transport properties at the chemical potential of lithium. Chem Mater
                                  2
                   2020;32:5525-33.  DOI
               51.      Li C, Guo X, Gu L, Samuelis D, Maier J. Ionic space-charge depletion in lithium fluoride thin films on sapphire (0001) substrates. Adv
                   Funct Mater 2011;21:2901-05.  DOI
               52.      Pan J, Zhang Q, Xiao X, Cheng Y, Qi Y. Design of nanostructured heterogeneous solid ionic coatings through a multiscale defect
                   model. ACS Appl Mater Interfaces 2016;8:5687-93.  DOI
               53.      Lorger S, Usiskin R, Maier J. Transport and charge carrier chemistry in lithium oxide. J Electrochem Soc 2019;166:A2215-20.  DOI
               54.      Muralidharan A, Chaudhari MI, Pratt LR, Rempe SB. Molecular dynamics of lithium ion transport in a model solid electrolyte
                   interphase. Sci Rep 2018;8:10736.  DOI
                                         +
               55.      Li W, Wu G, Araújo CM, et al. Li  ion conductivity and diffusion mechanism in a-Li N and b-Li N. Energy Environ Sci 2010;3:1524-
                                                                          3       3
                   30.  DOI
               56.      Liu Y, Hu R, Zhang D, et al. Constructing Li-rich artificial SEI layer in alloy-polymer composite electrolyte to achieve high ionic
                   conductivity for all-solid-state lithium metal batteries. Adv Mater 2021;33:2004711.  DOI
               57.      Chen C, Liang Q, Wang G, Liu D, Xiong X. Grain-boundary-rich artificial SEI layer for high-rate lithium metal anodes. Adv Funct
                   Mater 2021;32:2107249.  DOI
               58.      Miyakawa S, Matsuda S, Tanibata N, et al. Computational studies on defect chemistry and Li-ion conductivity of spinel-type LiAl O   8
                                                                                                        5
                   as coating material for Li-metal electrode. Sci Rep 2022;12:16672.  DOI
               59.      Wang R, Han H, Liu F, et al. Sulfonated poly(vinyl alcohol) as an artificial solid electrolyte interfacial layer for Li metal anode.
                   Electrochim Acta 2022;406:139840.  DOI
               60.      Luo Z, Li S, Yang L, et al. Interfacially redistributed charge for robust lithium metal anode. Nano Energy 2021;87:106212.  DOI
               61.      Hu A, Chen W, Du X, et al. An artificial hybrid interphase for an ultrahigh-rate and practical lithium metal anode. Energy Environ Sci
                   2021;14:4115-24.  DOI
               62.      Wang Z, Wang Y, Zhang Z, et al. Building artificial solid-electrolyte interphase with uniform intermolecular ionic bonds toward
                   dendrite-free lithium metal anodes. Adv Funct Mater 2020;30:2002414.  DOI
               63.      Chen H, Pei A, Lin D, et al. Uniform high ionic conducting lithium sulfide protection layer for stable lithium metal anode. Adv Energy
                   Mater 2019;9:1900858.  DOI
               64.      Hu J, Chen K, Li C. Nanostructured Li-rich fluoride coated by ionic liquid as high ion-conductivity solid electrolyte additive to
                   suppress dendrite growth at Li metal anode. ACS Appl Mater Interfaces 2018;10:34322-31.  DOI
               65.      Wang Y, Liu F, Fan G, et al. Electroless formation of a fluorinated Li/Na hybrid interphase for robust lithium anodes. J Am Chem Soc
                   2021;143:2829-37.  DOI
               66.      Li J, Dudney NJ, Nanda J, Liang C. Artificial solid electrolyte interphase to address the electrochemical degradation of silicon
                   electrodes. ACS Appl Mater Interfaces 2014;6:10083-88.  DOI
               67.      Han SA, Qutaish H, Park MS, Moon J, Kim JH. Strategic approaches to the dendritic growth and interfacial reaction of lithium metal
                   anode. Chem Asian J 2021;16:4010-17.  DOI
               68.      Yan C, Yao YX, Chen X, et al. Lithium nitrate solvation chemistry in carbonate electrolyte sustains high-voltage lithium metal
                   batteries. Angew Chem Int Ed 2018;57:14055-59.  DOI
               69.      Liu YY, Lin DC, Li YZ, et al. Solubility-mediated sustained release enabling nitrate additive in carbonate electrolytes for stable
                   lithium metal anode. Nat Commun 2018;9:3656.  DOI
               70.      Brown ZL, Heiskanen S, Lucht BL. Using triethyl phosphate to increase the solubility of LiNO  in carbonate electrolytes for
                                                                                     3
                   improving the performance of the lithium metal anode. J Electrochem Soc 2019;166:A2523-27.  DOI
               71.      Guo Y, Cheng J, Zeng J, et al. Li CO : insights into its blocking effect on Li-ion transfer in garnet composite electrolytes. ACS Appl
                                            3
                                         2
                   Energy Mater 2022;5:2853-61.  DOI
               72.      Camacho-Forero LE, Balbuena PB. Exploring interfacial stability of solid-state electrolytes at the lithium-metal anode surface. J
   106   107   108   109   110   111   112   113   114   115   116