Page 151 - Read Online
P. 151

Page 8 of 9                            Liu et al. Chem Synth 2023;3:22  https://dx.doi.org/10.20517/cs.2023.18

               11.      Drucker CS, Toscano VG, Weiss RG. General method for the determination of steric effects during collisional energy transfer. partial
                   photoresolution of penta-2, 3-diene. J Am Chem Soc 1973;95:6482-4.  DOI
               12.      Ouannes C, Beugelmans R, Roussi G. Asymmetric induction during transfer of triplet energy. J Am Chem Soc 1973;95:8472-4.  DOI
               13.      Hölzl-Hobmeier A, Bauer A, Silva AV, Huber SM, Bannwarth C, Bach T. Catalytic deracemization of chiral allenes by sensitized
                   excitation with visible light. Nature 2018;564:240-3.  DOI  PubMed
               14.      Shin NY, Ryss JM, Zhang X, Miller SJ, Knowles RR. Light-driven deracemization enabled by excited-state electron transfer. Science
                   2019;366:364-9.  DOI  PubMed  PMC
               15.      Mohr JT, Behenna DC, Harned AM, Stoltz BM. Deracemization of quaternary stereocenters by Pd-catalyzed enantioconvergent
                   decarboxylative allylation of racemic beta-ketoesters. Angew Chem Int Ed Engl 2005;44:6924-7.  DOI  PubMed
               16.      Trost BM, Organ MG. Deracemization of cyclic allyl esters. J Am Chem Soc 1994;116:10320-1.  DOI
               17.      Nakamura K, Inoue Y, Matsuda T, Ohno A. Microbial deracemization of 1-arylethanol. Tetrahedron Letters 1995;36:6263-6.  DOI
               18.      Voss CV, Gruber CC, Kroutil W. Deracemization of secondary alcohols through a concurrent tandem biocatalytic oxidation and
                   reduction. Angew Chem Int Ed Engl 2008;47:741-5.  DOI  PubMed
               19.      Liardo E, Ríos-lombardía N, Morís F, González-sabín J, Rebolledo F. A straightforward deracemization of sec -alcohols ccombining
                   organocatalytic oxidation and biocatalytic reduction. Eur J Org Chem 2018;2018:3031-5.  DOI
               20.      Koszelewski D, Pressnitz D, Clay D, Kroutil W. Deracemization of mexiletine biocatalyzed by omega-transaminases. Org Lett
                   2009;11:4810-2.  DOI  PubMed
               21.      Meng FJ, Shao BR, Velopolcek MK, Guo X, Feng GS, Shi L. Redox deracemization of phosphonate-substituted dihydropyrimidines.
                   Org Biomol Chem 2021;19:10570-4.  DOI
               22.      Mondal S, Roy D, Panda G. Critical view on the recent enantioselective synthesis of alcohols, amines and related molecules having
                   tertiary benzylic stereocenter. Tetrahedron 2018;74:4619-703.  DOI
               23.      Liu R, Liang R, Jia Y. Construction of benzylic stereogenic carbon centers through enantioselective arylation reactions. Synlett
                   2018;29:157-68.  DOI
               24.      Hucke O, Gelb MH, Verlinde CL, Buckner FS. The protein farnesyltransferase inhibitor Tipifarnib as a new lead for the development
                   of drugs against Chagas disease. J Med Chem 2005;48:5415-8.  DOI  PubMed  PMC
               25.      Nambo M, Crudden CM. Recent advances in the synthesis of triarylmethanes by transition metal catalysis. ACS Catal 2015;5:4734-42.
                   DOI
               26.      Mondal S, Roy D, Panda G. Overview on the recent strategies for the enantioselective synthesis of 1, 1-diarylalkanes, triarylmethanes
                   and related molecules containing the diarylmethine stereocenter. ChemCatChem 2018;10:1941-67.  DOI
               27.      Kshatriya R, Jejurkar VP, Saha S. Advances in the catalytic synthesis of triarylmethanes (TRAMs). Eur J Org Chem 2019;2019:3818-
                   41.  DOI
               28.      Mondal S, Panda G. Synthetic methodologies of achiral diarylmethanols, diaryl and triarylmethanes (TRAMs) and medicinal
                   properties of diaryl and triarylmethanes-an overview. RSC Adv 2014;4:28317-58.  DOI
               29.      Huang M, Zhang L, Pan T, Luo S. Deracemization through photochemical E/Z isomerization of enamines. Science 2022;375:869-74.
                   DOI  PubMed
               30.      Zhang C, Gao AZ, Nie X, et al. Catalytic α-deracemization of ketones enabled by photoredox deprotonation and enantioselective
                   protonation. J Am Chem Soc 2021;143:13393-400.  DOI
               31.      Zhang Z, Hu X. Visible-light-driven catalytic deracemization of secondary alcohols. Angew Chem Int Ed Engl 2021;60:22833-8.  DOI
                   PubMed  PMC
               32.      Gu Z, Zhang L, Li H, et al. Deracemization through sequential photoredox-neutral and chiral brønsted acid catalysis. Angew Chem Int
                   Ed Engl 2022;61:e202211241.  DOI  PubMed
               33.      Chen Q, Zhu Y, Shi X, et al. Light-driven redox deracemization of indolines and tetrahydroquinolines using a photocatalyst coupled
                   with chiral phosphoric acid. Chem Sci 2023;14:1715-23.  DOI  PubMed  PMC
               34.      Chen X, Zhao R, Liu Z, Liu L. Redox deracemization of α-substituted 1, 3-dihydroisobenzofurans. Chin Chem Lett 2021;32:2305-8.
                   DOI
               35.      Ma Y, Liu X, Mao Y, Huang J, Ma S, Liu L. Redox deracemization of diarylmethyl alkynes. Org Chem Front 2020;7:2526-30.  DOI
               36.      Mao Y, Wang Z, Wang G, et al. Redox deracemization of tertiary stereocenters adjacent to an electron-withdrawing group. ACS Catal
                   2020;10:7785-91.  DOI
               37.      Chen X, Yan L, Zhang L, et al. Aerobic redox deracemization of α-aryl glycine esters. Tetrahedron Letters 2020;61:152107.  DOI
               38.      Wan M, Sun S, Li Y, Liu L. Organocatalytic redox deracemization of cyclic benzylic ethers enabled by an acetal pool strategy. Angew
                   Chem Int Ed Engl 2017;56:5116-20.  DOI
               39.      Zhang L, Zhu R, Feng A, et al. Redox deracemization of β,γ-alkynyl α-amino esters. Chem Sci 2020;11:4444-9.  DOI  PubMed  PMC
               40.      Li X, Li Z, Sun J. Quinone methides and indole imine methides as intermediates in enantioselective catalysis. Nat Synth 2022;1:426-
                   38.  DOI
               41.      Li W, Xu X, Zhang P, Li P. Recent advances in the catalytic enantioselective reactions of para-quinone methides. Chem Asian J
                   2018;13:2350-9.  DOI  PubMed
               42.      Lima CGS, Pauli FP, Costa DCS, et al. para -Quinone methides as acceptors in 1,6-nucleophilic conjugate addition reactions for the
                   synthesis of structurally diverse molecules. Eur J Org Chem 2020;2020:2650-92.  DOI
               43.      Chu  WD,  Zhang  LF,  Bao  X,  et  al.  Asymmetric  catalytic  1,6-conjugate  addition/aromatization  of  para-quinone  methides:
   146   147   148   149   150   151   152   153   154   155   156