Page 16 - Read Online
P. 16

Page 12 of 12                Sathyan et al. Complex Eng Syst 2022;2:18  I http://dx.doi.org/10.20517/ces.2022.41



               22. Bhandari M, Shahi TB, Siku B, Neupane A. Explanatory classification of CXR images into COVID-19, Pneumonia and Tuberculosis
                  using deep learning and XAI. Comput Biol Med 2022;150:106156. DOI
               23. Lombardi A, Tavares JMR, Tangaro S. Explainable Artificial Intelligence (XAI) in Systems Neuroscience. Front Syst Neurosci 2021;15.
                  DOI
               24. Abdel-Zaher AM, Eldeib AM. Breast cancer classification using deep belief networks. Expert Systems with Applications 2016;46:139–44.
                  DOI
               25. UCI Machine Learning Repository: Breast Cancer Wisconsin (diagnostic) data set;. Accessed: 2022-07-13. Available from: https:
                  //archive.ics.uci.edu/ml/datasets/breast+cancer+wisconsin+(diagnostic) [Last accessed on 22 Dec 2022]
               26. Ribeiro MT, Singh S, Guestrin C. ”Why should I trust you?”: Explaining the predictions of any classifier. In: Proceedings of the 22nd
                  ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, August 13-17, 2016; 2016.
                  pp. 1135–44.
               27. An introduction to explainable AI with Shapley values;. Accessed: 2022-07-15. Available from: https://towardsdatascience.com/shap-ex
                  plained-the-way-i-wish-someone-explained-it-to-me-ab81cc69ef30. [Last accessed on 22 Dec 2022]
               28. Paszke A, Gross S, Massa F, et al. PyTorch: An imperative style, high-performance deep learning library. In: Wallach H, Larochelle H,
                  Beygelzimer A, d'Alché-Buc F, Fox E, et al., editors. Advances in Neural Information Processing Systems 32. Curran Associates, Inc.;
                  2019. pp. 8024–35. Available from: http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-
                  library.pdf [Last accessed on 22 Dec 2022]
               29. Kadam VJ, Jadhav SM, Vijayakumar K. Breast cancer diagnosis using feature ensemble learning based on stacked sparse autoencoders
                  and softmax regression. J Med Syst 2019;43:1–11. DOI
               30. Street WN, Wolberg WH, Mangasarian OL. Nuclear feature extraction for breast tumor diagnosis. In: Biomedical image processing and
                  biomedical visualization. vol. 1905. SPIE; 1993. pp. 861–70.
               31. Hariharan S, Rejimol Robinson R, Prasad RR, Thomas C, Balakrishnan N. XAI for intrusion detection system: comparing explanations
                  based on global and local scope. J Comput Virol Hack Tech 2022:1–23. DOI
               32. Visani G, Bagli E, Chesani F, Poluzzi A, Capuzzo D. Statistical stability indices for LIME: Obtaining reliable explanations for machine
                  learning models. J Operatl Res Society 2022;73:91–101. DOI
               33. Magesh PR, Myloth RD, Tom RJ. An explainable machine learning model for early detection of Parkinson’s disease using LIME on
                  DaTSCAN imagery. Comput Biol Med 2020;126:104041. DOI
   11   12   13   14   15   16   17   18   19   20   21