Page 48 - Read Online
P. 48
Bijnsdorp et al. Cancer Drug Resist 2021;4:719-27 https://dx.doi.org/10.20517/cdr.2021.21 Page 727
12. Sengupta S, Sellers LA, Matheson HB, Fan TP. Thymidine phosphorylase induces angiogenesis in vivo and in vitro: An evaluation of
possible mechanisms. Br J Pharmacol 2003;139:219-31. DOI PubMed PMC
13. Stevenson DP, Milligan SR, Collins WP. Effects of platelet-derived endothelial cell growth factor/thymidine phosphorylase, substrate,
and products in a three-dimensional model of angiogenesis. Am J Pathol 1998;152:1641-6. PubMed PMC
14. Azam M, Dikici S, Roman S, et al. Addition of 2-deoxy-d-ribose to clinically used alginate dressings stimulates angiogenesis and
accelerates wound healing in diabetic rats. J Biomater Appl 2019;34:463-75. DOI PubMed
15. Vara D, Watt JM, Fortunato TM, et al. Direct Activation of NADPH Oxidase 2 by 2-Deoxyribose-1-Phosphate Triggers Nuclear
Factor Kappa B-Dependent Angiogenesis. Antioxid Redox Signal 2018;28:110-30. DOI PubMed PMC
16. Pula G, Garonna E, Dunn WB, et al. Paracrine stimulation of endothelial cell motility and angiogenesis by platelet-derived
deoxyribose-1-phosphate. Arterioscler Thromb Vasc Biol 2010;30:2631-8. DOI PubMed PMC
17. Bijnsdorp IV, Capriotti F, Kruyt FA, et al. Thymidine phosphorylase in cancer cells stimulates human endothelial cell migration and
invasion by the secretion of angiogenic factors. Br J Cancer 2011;104:1185-92. DOI PubMed PMC
18. Brown NS, Jones A, Fujiyama C, Harris AL, Bicknell R. Thymidine phosphorylase induces carcinoma cell oxidative stress and
promotes secretion of angiogenic factors. Cancer Res 2000;60:6298-302. PubMed
19. Bijnsdorp IV, de Bruin M, Laan AC, Fukushima M, Peters GJ. The role of platelet-derived endothelial cell growth factor/thymidine
phosphorylase in tumor behavior. Nucleosides Nucleotides Nucleic Acids 2008;27:681-91. DOI PubMed
20. Seeliger H, Guba M, Koehl GE, et al. Blockage of 2-deoxy-D-ribose-induced angiogenesis with rapamycin counteracts a thymidine
phosphorylase-based escape mechanism available for colon cancer under 5-fluorouracil therapy. Clin Cancer Res 2004;10:1843-52.
DOI PubMed
21. Chiang GG, Abraham RT. Targeting the mTOR signaling network in cancer. Trends Mol Med 2007;13:433-42. DOI PubMed
22. Zou Z, Tao T, Li H, Zhu X. mTOR signaling pathway and mTOR inhibitors in cancer: progress and challenges. Cell Biosci
2020;10:31. DOI PubMed PMC
23. Klionsky D, Abdelmohsen K, Abe A, et al. Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition).
Autophagy 2016;12:1-222. DOI PubMed PMC
24. Bijnsdorp IV, Peters GJ, Temmink OH, Fukushima M, Kruyt FA. Differential activation of cell death and autophagy results in an
increased cytotoxic potential for trifluorothymidine compared to 5-fluorouracil in colon cancer cells. Int J Cancer 2010;126:2457-68.
DOI PubMed
25. Guo XL, Li D, Hu F, et al. Targeting autophagy potentiates chemotherapy-induced apoptosis and proliferation inhibition in
hepatocarcinoma cells. Cancer Lett 2012;320:171-9. DOI PubMed
26. de la Cruz-Morcillo MA, Valero ML, et al. P38MAPK is a major determinant of the balance between apoptosis and autophagy
triggered by 5-fluorouracil: implication in resistance. Oncogene 2012;31:1073-85. DOI PubMed
27. Selvakumaran M, Amaravadi RK, Vasilevskaya IA, O'Dwyer PJ. Autophagy inhibition sensitizes colon cancer cells to antiangiogenic
and cytotoxic therapy. Clin Cancer Res 2013;19:2995-3007. DOI PubMed
28. Karasic TB, O'Hara MH, Loaiza-Bonilla A, et al. Effect of gemcitabine and nab-paclitaxel with or without hydroxychloroquine on
patients with advanced pancreatic cancer: a phase 2 randomized clinical trial. JAMA Oncol 2019;5:993-8. DOI PubMed PMC
29. Rosenfeld MR, Ye X, Supko JG, et al. A phase I/II trial of hydroxychloroquine in conjunction with radiation therapy and concurrent
and adjuvant temozolomide in patients with newly diagnosed glioblastoma multiforme. Autophagy 2014;10:1359-68. DOI PubMed
PMC
30. de Bruin M, van Capel T, Van der Born K, et al. Role of platelet-derived endothelial cell growth factor/thymidine phosphorylase in
fluoropyrimidine sensitivity. Br J Cancer 2003;88:957-64. DOI PubMed PMC
31. Keepers YP, Pizao PE, Peters GJ, van Ark-Otte J, Winograd B, Pinedo HM. Comparison of the sulforhodamine B protein and
tetrazolium (MTT) assays for in vitro chemosensitivity testing. Eur J Cancer 1991;27:897-900. DOI PubMed
32. Bijnsdorp IV, Kruyt FA, Gokoel S, Fukushima M, Peters GJ. Synergistic interaction between trifluorothymidine and docetaxel is
sequence dependent. Cancer Sci 2008;99:2302-8. DOI PubMed
33. Emura T, Nakagawa F, Fujioka A, Ohshimo H, Kitazato K. Thymidine kinase and thymidine phosphorylase level as the main
predictive parameter for sensitivity to TAS-102 in a mouse model. Oncol Rep 2004;11:381-7. PubMed
34. Temmink OH, Emura T, de Bruin M, Fukushima M, Peters GJ. Therapeutic potential of the dual-targeted TAS-102 formulation in the
treatment of gastrointestinal malignancies. Cancer Sci 2007;98:779-89. DOI PubMed
35. Rots MG, Pieters R, Kaspers GJL, et al. Differential methotrexate resistance in childhood T- versus Common/PreB-Acute
lymphoblastic Leukemia can be measured by an in situ thymidylate synthase inhibition assay, but not by the MTT assay. Blood
1999;93:1067-74. PubMed
36. White E, DiPaola RS. The double-edged sword of autophagy modulation in cancer. Clin Cancer Res 2009;15:5308-16. DOI PubMed
PMC
37. Stankov MV, Panayotova-Dimitrova D, Leverkus M, et al. Autophagy inhibition due to thymidine analogues as novel mechanism
leading to hepatocyte dysfunction and lipid accumulation. AIDS 2012;26:1995-2006. DOI PubMed
38. Yang ZJ, Chee CE, Huang S, Sinicrope FA. The role of autophagy in cancer: therapeutic implications. Mol Cancer Ther
2011;10:1533-41. DOI PubMed PMC
39. Bijnsdorp IV, Peters GJ. Deoxyribose protects against rapamycin induced cytotoxicity in colorectal cancer cells in vitro. Nucleosides
Nucleotides Nucleic Acids 2011;30:1197-202. DOI PubMed