Page 66 - Read Online
P. 66

Saliba et al. Cancer Drug Resist 2021;4:125-42  I  http://dx.doi.org/10.20517/cdr.2020.95                                              Page 141

                   2019;104:e434-7.
               140. Birkinshaw RW, Gong JN, Luo CS, et al. Structures of BCL-2 in complex with venetoclax reveal the molecular basis of resistance
                   mutations. Nat Commun 2019;10:2385.
               141. Blombery P, Anderson MA, Gong JN, et al. Acquisition of the recurrent Gly101Val mutation in BCL2 confers resistance to venetoclax in
                   patients with progressive chronic lymphocytic leukemia. Cancer Discov 2019;9:342-53.
               142. Anderson MA, Tam C, Lew TE, et al. Clinicopathological features and outcomes of progression of CLL on the BCL2 inhibitor
                   venetoclax. Blood 2017;129:3362-70.
               143. Tessoulin B, Papin A, Gomez-Bougie P, et al. BCL2-family dysregulation in B-cell malignancies: from gene expression regulation to a
                   targeted therapy biomarker. Front Oncol 2018;8:645.
               144. Thijssen R, Slinger E, Weller K, et al. Resistance to ABT-199 induced by microenvironmental signals in chronic lymphocytic leukemia
                   can be counteracted by CD20 antibodies or kinase inhibitors. Haematologica 2015;100:e302-6.
               145. Guièze R, Liu VM, Rosebrock D, et al. Mitochondrial reprogramming underlies resistance to BCL-2 inhibition in lymphoid malignancies.
                   Cancer Cell 2019;36:369-84.e13.
               146. Choudhary GS, Al-Harbi S, Mazumder S, et al. MCL-1 and BCL-xL-dependent resistance to the BCL-2 inhibitor ABT-199 can be
                   overcome by preventing PI3K/AKT/mTOR activation in lymphoid malignancies. Cell Death Dis 2015;6:e1593.
               147. Hollands C. Strychnine poisoning. Vet Rec 1989;124:473.
               148. Mazumder S, Choudhary GS, Al-Harbi S, Almasan A. Mcl-1 phosphorylation defines ABT-737 resistance that can be overcome by
                   increased NOXA expression in leukemic B cells. Cancer Res 2012;72:3069-79.
               149. Luedtke DA, Niu X, Pan Y, et al. Inhibition of Mcl-1 enhances cell death induced by the Bcl-2-selective inhibitor ABT-199 in acute
                   myeloid leukemia cells. Signal Transduct Target Ther 2017;2:17012.
               150. Niu X, Zhao J, Ma J, et al. Binding of released Bim to Mcl-1 is a mechanism of intrinsic resistance to ABT-199 which can be overcome
                   by combination with daunorubicin or cytarabine in AML cells. Clin Cancer Res 2016;22:4440-51.
               151. Lin KH, Winter PS, Xie A, et al. Targeting MCL-1/BCL-XL forestalls the acquisition of Resistance to ABT-199 in acute myeloid
                   leukemia. Sci Rep 2016;6:27696.
               152. Li Z, He S, Look AT. The MCL1-specific inhibitor S63845 acts synergistically with venetoclax/ABT-199 to induce apoptosis in T-cell
                   acute lymphoblastic leukemia cells. Leukemia 2019;33:262-6.
               153. Weiss J, Peifer M, Herling CD, Frenzel LP, Hallek M. Acquisition of the recurrent Gly101Val mutation in BCL2 confers resistance to
                   venetoclax in patients with progressive chronic lymphocytic leukemia (Comment to Tausch et al.). Haematologica 2019;104:e540.
               154. Beà S, Valdés-Mas R, Navarro A, et al. Landscape of somatic mutations and clonal evolution in mantle cell lymphoma. Proc Natl Acad
                   Sci U S A 2013;110:18250-5.
               155. Nechiporuk T, Kurtz SE, Nikolova O, et al. The TP53 apoptotic network is a primary mediator of resistance to BCL2 inhibition in AML
                   cells. Cancer Discov 2019;9:910-25.
               156. Sharon D, Cathelin S, Mirali S, et al. Inhibition of mitochondrial translation overcomes venetoclax resistance in AML through activation
                   of the integrated stress response. Sci Transl Med 2019;11:eaax2863.
               157. Jin S, Cojocari D, Purkal JJ, et al. 5-Azacitidine induces NOXA to prime AML cells for venetoclax-mediated apoptosis. Clin Cancer Res
                   2020;26:3371-83.
               158. Zhao S, Kanagal-Shamanna R, Navsaria L, et al. Efficacy of venetoclax in high risk relapsed mantle cell lymphoma (MCL) - outcomes
                   and mutation profile from venetoclax resistant MCL patients. Am J Hematol 2020;95:623-9.
               159. Chyla B, Daver N, Doyle K, et al. Genetic biomarkers of sensitivity and resistance to venetoclax monotherapy in patients with relapsed
                   acute myeloid leukemia. Am J Hematol 2018:E202-5.
               160. Kim E, Ilagan JO, Liang Y, et al. SRSF2 mutations contribute to myelodysplasia by mutant-specific effects on Exon recognition. Cancer
                   Cell 2015;27:617-30.
               161. Bogenberger JM, Kornblau SM, Pierceall WE, et al. BCL-2 family proteins as 5-Azacytidine-sensitizing targets and determinants of
                   response in myeloid malignancies. Leukemia 2014;28:1657-65.
               162. Pan R, Hogdal LJ, Benito JM, et al. Selective BCL-2 inhibition by ABT-199 causes on-target cell death in acute myeloid leukemia.
                   Cancer Discov 2014;4:362-75.
               163. Bogenberger JM, Delman D, Hansen N, et al. Ex vivo activity of BCL-2 family inhibitors ABT-199 and ABT-737 combined with
                   5-azacytidine in myeloid malignancies. Leuk Lymphoma 2015;56:226-9.
               164. Tsao T, Shi Y, Kornblau S, et al. Concomitant inhibition of DNA methyltransferase and BCL-2 protein function synergistically induce
                   mitochondrial apoptosis in acute myelogenous leukemia cells. Ann Hematol 2012;91:1861-70.
               165. Pollyea DA, Stevens BM, Jones CL, et al. Venetoclax with azacitidine disrupts energy metabolism and targets leukemia stem cells in
                   patients with acute myeloid leukemia. Nat Med 2018;24:1859-66.
               166. Jilg S, Hauch RT, Kauschinger J, et al. Venetoclax with azacitidine targets refractory MDS but spares healthy hematopoiesis at tailored
                   dose. Exp Hematol Oncol 2019;8:9.
               167. Pei S, Pollyea DA, Gustafson A, et al. Monocytic subclones confer resistance to venetoclax-based therapy in patients with acute myeloid
                   leukemia. Cancer Discov 2020;10:536-51.
               168. DiNardo CD, Tiong IS, Quaglieri A, et al. Molecular patterns of response and treatment failure after frontline venetoclax combinations in
                   older patients with AML. Blood 2020;135:791-803.
               169. Maiti A, Rausch CR, Cortes JE, et al. Outcomes of relapsed or refractory acute myeloid leukemia after frontline hypomethylating agent
                   and venetoclax regimens. Haematologica 2020; doi: 10.3324/haematol.2020.252569.
   61   62   63   64   65   66   67   68   69   70   71