Page 65 - Read Online
P. 65
Page 140 Saliba et al. Cancer Drug Resist 2021;4:125-42 I http://dx.doi.org/10.20517/cdr.2020.95
107. Li LH, Olin EJ, Buskirk HH, Reineke LM. Cytotoxicity and mode of action of 5-azacytidine on l1210 leukemia. Cancer Res
1970;30:2760-9.
108. Cheng JX, Chen L, Li Y, et al. RNA cytosine methylation and methyltransferases mediate chromatin organization and 5-azacytidine
response and resistance in leukaemia. Nat Commun 2018;9:1163.
109. Earnshaw WC, Martins LM, Kaufmann SH. Mammalian caspases: structure, activation, substrates and functions during apoptosis. Ann
Rev Biochem 1999;68:383-424.
110. Taylor RC, Cullen SP, Martin SJ. Apoptosis: controlled demolition at the cellular level. Nat Rev Mol Cell Biol 2008;9:231-41.
111. Strasser A, Cory S, Adams JM. Deciphering the rules of programmed cell death to improve therapy of cancer and other diseases. EMBO J
2011;30:3667-83.
112. Czabotar PE, Lessene G, Strasser A, Adams JM. Control of apoptosis by the BCL-2 protein family: implications for physiology and
therapy. Nat Rev Mol Cell Biol 2014;15:49-63.
113. Moldoveanu T, Follis AV, Kriwacki RW, Green DR. Many players in BCL-2 family affairs. Trends Biochem Sci 2014;39:101-11.
114. Llambi F, Moldoveanu T, Tait SW, et al. A unified model of mammalian BCL-2 protein family interactions at the mitochondria. Mol Cell
2011;44:517-31.
115. Andreeff M, Jiang S, Zhang X, et al. Expression of Bcl-2-related genes in normal and AML progenitors: changes induced by
chemotherapy and retinoic acid. Leukemia 1999;13:1881-92.
116. Venditti A, Del Poeta G, Maurillo L, et al. Combined analysis of bcl-2 and mdr1 proteins in 256 cases of acute myeloid leukemia.
Haematologica 2004;89:934-9.
117. Delbridge AR, Grabow S, Strasser A, Vaux DL. Thirty years of BCL-2: translating cell death discoveries into novel cancer therapies. Nat
Rev Cancer 2016;16:99-109.
118. Cory S, Roberts AW, Colman PM, Adams JM. Targeting BCL-2-like Proteins to Kill Cancer Cells. Trends Cancer 2016;2:443-60.
119. Singh R, Letai A, Sarosiek K. Regulation of apoptosis in health and disease: the balancing act of BCL-2 family proteins. Nat Rev Mol
Cell Biol 2019;20:175-93.
120. Merino D, Kelly GL, Lessene G, Wei AH, Roberts AW, Strasser A. BH3-mimetic drugs: blazing the trail for new cancer medicines.
Cancer Cell 2018;34:879-91.
121. Tse C, Shoemaker AR, Adickes J, et al. Abt-263: a potent and orally bioavailable bcl-2 family inhibitor. Cancer Res 2008;68:3421-8.
122. Stilgenbauer S, Eichhorst B, Schetelig J, et al. Venetoclax in relapsed or refractory chronic lymphocytic leukaemia with 17p deletion: a
multicentre, open-label, phase 2 study. Lancet Oncol 2016;17:768-78.
123. Wilson WH, O’connor OA, Czuczman MS, et al. Navitoclax, a targeted high-affinity inhibitor of BCL-2, in lymphoid malignancies: a
phase 1 dose-escalation study of safety, pharmacokinetics, pharmacodynamics, and antitumour activity. Lancet Oncol 2010;11:1149-59.
124. Roberts AW, Seymour JF, Brown JR, et al. Substantial susceptibility of chronic lymphocytic leukemia to BCL2 inhibition: results of a
phase I study of navitoclax in patients with relapsed or refractory disease. J Clin Oncol 2012;30:488-96.
125. Mason KD, Carpinelli MR, Fletcher JI, et al. Programmed anuclear cell death delimits platelet life span. Cell 2007;128:1173-86.
126. Souers AJ, Leverson JD, Boghaert ER, et al. ABT-199, a potent and selective BCL-2 inhibitor, achieves antitumor activity while sparing
platelets. Nat Med 2013;19:202-8.
127. Vogler M, Dinsdale D, Dyer MJ, Cohen GM. ABT-199 selectively inhibits BCL2 but not BCL2L1 and efficiently induces apoptosis of
chronic lymphocytic leukaemic cells but not platelets. Br J Haematol 2013;163:139-42.
128. Roberts AW, Davids MS, Pagel JM, et al. Targeting BCL2 with Venetoclax in relapsed chronic lymphocytic leukemia. N Engl J Med
2016;374:311-22.
129. Roberts AW, Huang D. Targeting BCL2 With BH3 mimetics: basic science and clinical application of venetoclax in chronic lymphocytic
leukemia and related B cell malignancies. Clin Pharmacol Ther 2017;101:89-98.
130. Pham TD, Pham PQ, Li J, Letai AG, Wallace DC, Burke PJ. Cristae remodeling causes acidification detected by integrated graphene
sensor during mitochondrial outer membrane permeabilization. Sci Rep 2016;6:35907.
131. Lucantoni F, Düssmann H, Llorente-Folch I, Prehn JHM. BCL2 and BCL(X)L selective inhibitors decrease mitochondrial ATP production
in breast cancer cells and are synthetically lethal when combined with 2-deoxy-D-glucose. Oncotarget 2018;9:26046-63.
132. Chen X, Glytsou C, Zhou H, et al. Targeting mitochondrial structure sensitizes acute myeloid leukemia to venetoclax treatment. Cancer
Discov 2019;9:890-909.
133. Hanada M, Delia D, Aiello A, Stadtmauer E, Reed JC. Bcl-2 gene hypomethylation and high-level expression in b-cell chronic
lymphocytic leukemia. Blood 1993;82:1820-8.
134. Calin GA, Dumitru CD, Shimizu M, et al. Frequent deletions and down-regulation of micro- RNA genes miR15 and miR16 at 13q14 in
chronic lymphocytic leukemia. Proc Natl Acad Sci U S A 2002;99:15524-9.
135. Cimmino A, Calin GA, Fabbri M, et al. miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc Natl Acad Sci U S A
2005;102:13944-9.
136. Anderson MA, Deng J, Seymour JF, et al. The BCL2 selective inhibitor venetoclax induces rapid onset apoptosis of CLL cells in patients
via a TP53-independent mechanism. Blood 2016;127:3215-24.
137. Huemer F, Melchardt T, Jansko B, et al. Durable remissions with venetoclax monotherapy in secondary AML refractory to
hypomethylating agents and high expression of BCL-2 and/or BIM. Eur J Haematol 2019;102:437-41.
138. Konopleva M, Pollyea DA, Potluri J, et al. Efficacy and biological correlates of response in a phase II study of venetoclax monotherapy
in patients with acute myelogenous leukemia. Cancer Discov 2016;6:1106-17.
139. Tausch E, Close W, Dolnik A, et al. Venetoclax resistance and acquired BCL2 mutations in chronic lymphocytic leukemia. Haematologica