Page 63 - Read Online
P. 63
Page 138 Saliba et al. Cancer Drug Resist 2021;4:125-42 I http://dx.doi.org/10.20517/cdr.2020.95
42. Constantinides PG, Taylor SM, Jones PA. Phenotypic conversion of cultured mouse embryo cells by aza pyrimidine nucleosides. Dev
Biol 1978;66:57-71.
43. Taylor SM, Jones PA. Multiple new phenotypes induced in and 3T3 cells treated with 5-azacytidine. Cell 1979;17:771-9.
44. Constantinides PG, Jones PA, Gevers W. Functional striated muscle cells from non-myoblast precursors following 5-azacytidine
treatment. Nature 1977;267:364-6.
45. Jones PA, Taylor SM. Cellular differentiation, cytidine analogs and DNA methylation. Cell 1980;20:85-93.
46. Veselý J. Mode of action and effects of 5-azacytidine and of its derivatives in eukaryotic cells. Pharmacol Therap 1985;28:227-35.
47. Stresemann C, Lyko F. Modes of action of the DNA methyltransferase inhibitors azacytidine and decitabine. Int J Cancer 2008;123:8-13.
48. Kuykendall JR. 5-azacytidine and decitabine monotherapies of myelodysplastic disorders. Ann Pharmacother 2005;39:1700-9.
49. Lee TT, Karon MR. Inhibition of protein synthesis in 5-azacytidine-treated HeLa cells. Biochem Pharmacol 1976;25:1737-42.
50. Lu LJ, Randerath K. Mechanism of 5-azacytidine-induced transfer rna cytosine-5-methyltransferase deficiency. Cancer Res
1980;40:2701-5.
51. Schaefer M, Hagemann S, Hanna K, Lyko F. Azacytidine inhibits RNA methylation at DNMT2 target sites in human cancer cell lines.
Cancer Res 2009;69:8127-32.
52. Taylor SM, Jones PA. Mechanism of action of eukaryotic DNA methyltransferase. J Mol Biol 1982;162:679-92.
53. Santi DV, Norment A, Garrett CE. Covalent bond formation between a DNA-cytosine methyltransferase and DNA containing
5-azacytosine. Proc Natl Acad Sci U S A 1984;81:6993-7.
54. Christman JK, Schneiderman N, Acs G. Formation of highly stable complexes between 5-azacytosine-substituted DNA and specific
non-histone nuclear proteins. Implications for 5-azacytidine-mediated effects on DNA methylation and gene expression. J Biol Chem
1985;260:4059-68.
55. Ferguson AT, Vertino PM, Spitzner JR, et al. Role of estrogen receptor gene demethylation and DNA methyltransferase.DNA adduct
formation in 5-aza-2’deoxycytidine-induced cytotoxicity in human breast cancer cells. J Biol Chem 1997;272:32260-6.
56. Oka M, Meacham AM, Hamazaki T, Rodić N, Chang LJ, Terada N. De novo DNA methyltransferases Dnmt3a and Dnmt3b primarily
mediate the cytotoxic effect of 5-aza-2’-deoxycytidine. Oncogene 2005;24:3091-9.
57. Copeland RA, Olhava EJ, Scott MP. Targeting epigenetic enzymes for drug discovery. Curr Opin Chem Biol 2010;14:505-10.
58. Champion C, Guianvarc’h D, Sénamaud-Beaufort C, et al. Mechanistic insights on the inhibition of c5 DNA methyltransferases by
zebularine. PLoS One 2010;5:e12388.
59. Chen L, MacMillan AM, Chang W, et al. Direct identification of the active-site nucleophile in a DNA (cytosine-5)-methyltransferase.
Biochemistry 1991;30:11018-25.
60. Wilson VL, Jones PA, Momparler RL. Inhibition of DNA methylation in l1210 leukemic cells by 5-aza-2’-deoxycytidine as a possible
mechanism of chemotherapeutic action. Cancer Res 1983;43:3493-6.
61. Bender CM, Zingg JM, Jones PA. DNA methylation as a target for drug design. Pharm Res 1998;15:175-87.
62. Muvarak NE, Chowdhury K, Xia L, et al. Enhancing the cytotoxic effects of PARP inhibitors with DNA demethylating agents - a
potential therapy for cancer. Cancer Cell 2016;30:637-50.
63. Jüttermann R, Li E, Jaenisch R. Toxicity of 5-aza-2’-deoxycytidine to mammalian cells is mediated primarily by covalent trapping of
DNA methyltransferase rather than DNA demethylation. Proc Natl Acad Sci U S A 1994;91:11797-801.
64. Stingele J, Bellelli R, Boulton SJ. Mechanisms of DNA-protein crosslink repair. Nat Rev Mol Cell Biol 2017;18:563-73.
65. Veselý J, Cihák A, Sorm F. Characteristics of mouse leukemic cells resistant to 5-azacytidine and 5-aza-2’-deoxycytidine. Cancer Res
1968;28:1995-2000.
66. Mortusewicz O, Schermelleh L, Walter J, Cardoso MC, Leonhardt H. Recruitment of DNA methyltransferase I to DNA repair sites. Proc
Natl Acad Sci U S A 2005;102:8905-9.
67. Vispé S, Deroide A, Davoine E, et al. Consequences of combining siRNA-mediated DNA methyltransferase 1 depletion with 5-aza-2’-
deoxycytidine in human leukemic KG1 cells. Oncotarget 2015;6:15265-82.
68. Stein EM, DiNardo CD, Pollyea DA, et al. Enasidenib in mutant IDH2 relapsed or refractory acute myeloid leukemia. Blood
2017;130:722-31.
69. Savona MR, Odenike O, Amrein PC, et al. An oral fixed-dose combination of decitabine and cedazuridine in myelodysplastic syndromes:
a multicentre, open-label, dose-escalation, phase 1 study. Lancet Haematol 2019;6:e194-203.
70. Garcia-Manero G, Griffiths EA, Steensma DP, et al. Oral cedazuridine/decitabine for MDS and CMML: a phase 2 pharmacokinetic/
pharmacodynamic randomized crossover study. Blood 2020;136:674-83.
71. Roboz GJ, Montesinos P, Selleslag D, et al. Design of the randomized, Phase III, QUAZAR AML Maintenance trial of CC-486 (oral
azacitidine) maintenance therapy in acute myeloid leukemia. Future Oncol 2016;12:293-302.
72. Wei AH, Döhner H, Pocock C, et al. The quazar aml-001 maintenance trial: results of a phase iii international, randomized, double-blind,
placebo-controlled study of cc-486 (oral formulation of azacitidine) in patients with acute myeloid leukemia (aml) in first remission.
American Society of Hematology Washington, DC; 2019.
73. Claus R, Lübbert M. Epigenetic targets in hematopoietic malignancies. Oncogene 2003;22:6489-96.
74. Momparler RL, Rivard GE, Gyger M. Clinical trial on 5-AZA-2′-deoxycytidine in patients with acute leukemia. Pharmacol Therap
1985;30:277-86.
75. Rivard GE, Momparler RL, Demers J, et al. Phase I study on 5-aza-2′-deoxycytidine in children with acute leukemia. Leuk Res
1981;5:453-62.
76. Wijermans P, Lübbert M, Verhoef G, et al. Low-dose 5-aza-2’-deoxycytidine, a DNA hypomethylating agent, for the treatment of high-