Page 64 - Read Online
P. 64

Saliba et al. Cancer Drug Resist 2021;4:125-42  I  http://dx.doi.org/10.20517/cdr.2020.95                                              Page 139

                   risk myelodysplastic syndrome: a multicenter phase II study in elderly patients. J Clin Oncol 2000;18:956-62.
               77.  Wijermans PW, Krulder JW, Huijgens PC, Neve P. Continuous infusion of low-dose 5-Aza-2’-deoxycytidine in elderly patients with high-
                   risk myelodysplastic syndrome. Leukemia 1997;11:1-5.
               78.  Kantarjian H, Issa JP, Rosenfeld CS, et al. Decitabine improves patient outcomes in myelodysplastic syndromes: results of a phase III
                   randomized study. Cancer 2006;106:1794-803.
               79.  Lübbert M, Suciu S, Baila L, et al. Low-dose decitabine versus best supportive care in elderly patients with intermediate- or high-risk
                   myelodysplastic syndrome (MDS) ineligible for intensive chemotherapy: final results of the randomized phase III study of the European
                   Organisation for Research and Treatment of Cancer Leukemia Group and the German MDS Study Group. J Clin Oncol 2011;29:1987-96.
               80.  Silverman LR, Demakos EP, Peterson BL, et al. Randomized controlled trial of azacitidine in patients with the myelodysplastic syndrome:
                   a study of the cancer and leukemia group B. J Clin Oncol 2002;20:2429-40.
               81.  Karon M, Sieger L, Leimbrock S, et al. 5-azacytidine: a new active agent for the treatment of acute leukemia. Blood 1973;42:359-65.
               82.  Saiki JH, Bodey GP, Hewlett JS, et al. Effect of schedule on activity and toxicity of 5-azacytidine in acute leukemia: a southwest
                   oncology group study. Cancer 1981;47:1739-42.
               83.  Fenaux P, Mufti GJ, Hellström-Lindberg E, et al. Azacitidine prolongs overall survival compared with conventional care regimens in
                   elderly patients with low bone marrow blast count acute myeloid leukemia. J Clin Oncol 2010;28:562-9.
               84.  Harris NL, Jaffe ES, Diebold J, et al. The world health organization classification of neoplasms of the hematopoietic and lymphoid
                   tissues: report of the Clinical Advisory Committee meeting--Airlie House, Virginia, November, 1997. Hematol J 2000;1:53-66.
               85.  Silverman LR, McKenzie DR, Peterson BL, et al; Cancer and Leukemia Group B. Further analysis of trials with azacitidine in patients
                   with myelodysplastic syndrome: studies 8421, 8921, and 9221 by the Cancer and Leukemia Group B. J Clin Oncol 2006;24:3895-903.
               86.  Pleyer L, Burgstaller S, Girschikofsky M, et al. Azacitidine in 302 patients with WHO-defined acute myeloid leukemia: results from the
                   Austrian Azacitidine Registry of the AGMT-Study Group. Ann Hematol 2014;93:1825-38.
               87.  Thépot S, Itzykson R, Seegers V, et al; Groupe Francophone des Myélodysplasies (GFM), Acute Leukemia French Association (ALFA);
                   Groupe Ouest-Est des Leucémies Aiguës; Maladies du Sang (GOELAMS). Azacitidine in untreated acute myeloid leukemia: a report on
                   149 patients. Am J Hematol 2014;89:410-6.
               88.  Hummel-Eisenbeiss J, Hascher A, Hals PA, et al. The role of human equilibrative nucleoside transporter 1 on the cellular transport of the
                   DNA methyltransferase inhibitors 5-azacytidine and CP-4200 in human leukemia cells. Mol Pharmacol 2013;84:438-50.
               89.  Wu P, Geng S, Weng J, et al. The hENT1 and DCK genes underlie the decitabine response in patients with myelodysplastic syndrome.
                   Leuk Res 2015;39:216-20.
               90.  Brueckner B, Rius M, Markelova MR, et al. Delivery of 5-azacytidine to human cancer cells by elaidic acid esterification increases
                   therapeutic drug efficacy. Mol Cancer Ther 2010;9:1256-64.
               91.  Camiener GW, Smith CG. Studies of the enzymatic deamination of cytosine arabinoside-I. Biochem Pharmacol 1965;14:1405-16.
               92.  Zauri M, Berridge G, Thézénas ML, et al. CDA directs metabolism of epigenetic nucleosides revealing a therapeutic window in cancer.
                   Nature 2015;524:114-8.
               93.  Eliopoulos N, Cournoyer D, Momparler RL. Drug resistance to 5-aza-2’-deoxycytidine, 2’,2’-difluorodeoxycytidine, and cytosine
                   arabinoside conferred by retroviral-mediated transfer of human cytidine deaminase cDNA into murine cells. Cancer Chemother
                   Pharmacol 1998;42:373-8.
               94.  Beauséjour CM, Eliopoulos N, Momparler L, Le NL, Momparler RL. Selection of drug-resistant transduced cells with cytosine
                   nucleoside analogs using the human cytidine deaminase gene. Cancer Gene Ther 2001;8:669-76.
               95.  Valencia A, Masala E, Rossi A, et al. Expression of nucleoside-metabolizing enzymes in myelodysplastic syndromes and modulation of
                   response to azacitidine. Leukemia 2014;28:621-8.
               96.  Qin T, Castoro R, El Ahdab S, et al. Mechanisms of resistance to decitabine in the myelodysplastic syndrome. PLoS One 2011;6:e23372.
               97.  Gruber E, Franich RL, Shortt J, Johnstone RW, Kats LM. Distinct and overlapping mechanisms of resistance to azacytidine and
                   guadecitabine in acute myeloid leukemia. Leukemia 2020;34:3388-92.
               98.  Grant S, Bhalla K, Gleyzer M. Interaction of deoxycytidine and deoxycytidine analogs in normal and leukemic human myeloid progenitor
                   cells. Leukemia Research 1986;10:1139-46.
               99.  Grant S, Bhalla K, Gleyzer M. Effect of uridine on response of 5-azacytidine-resistant human leukemic cells to inhibitors of de novo
                   pyrimidine synthesis. Cancer Res 1984;44:5505-10.
               100. Itzykson R, Kosmider O, Cluzeau T, et al; Groupe Francophone des Myelodysplasies (GFM). Impact of TET2 mutations on response rate
                   to azacitidine in myelodysplastic syndromes and low blast count acute myeloid leukemias. Leukemia 2011;25:1147-52.
               101. Bejar R, Lord A, Stevenson K, et al. TET2 mutations predict response to hypomethylating agents in myelodysplastic syndrome patients.
                   Blood 2014;124:2705-12.
               102. Traina F, Visconte V, Elson P, et al. Impact of molecular mutations on treatment response to DNMT inhibitors in myelodysplasia and
                   related neoplasms. Leukemia 2014;28:78-87.
               103. Cedena MT, Rapado I, Santos-lozano A, et al. Mutations in the DNA methylation pathway and number of driver mutations predict
                   response to azacitidine in myelodysplastic syndromes. Oncotarget 2017;8:106948-61.
               104. Coombs CC, Sallman DA, Devlin SM, et al. Mutational correlates of response to hypomethylating agent therapy in acute myeloid
                   leukemia. Haematologica 2016;101:e457-60.
               105. Ali A, Penneroux J, Dal Bello R Jr, et al. Granulomonocytic progenitors are key target cells of azacytidine in higher risk myelodysplastic
                   syndromes and acute myeloid leukemia. Leukemia 2018;32:1856-60.
               106. Treppendahl MB, Kristensen LS, Grønbæk K. Predicting response to epigenetic therapy. J Clin Invest 2014;124:47-55.
   59   60   61   62   63   64   65   66   67   68   69