Page 62 - Read Online
P. 62

Sale et al. Cancer Drug Resist 2019;2:365-80  I  http://dx.doi.org/10.20517/cdr.2019.14                                                   Page 379

                   1997;17:5588-97.
               16.  Woods D, Parry D, Cherwinski H, Bosch E, Lees E, et al. Raf-induced proliferation or cell cycle arrest is determined by the level of Raf
                   activity with arrest mediated by p21 Cip1 . Mol Cell Biol 1997;17:5598-611.
               17.  Park JS, Qiao L, Gilfor D, Yang MY, Hylemon PB, et al. A role for both Ets and C/EBP transcription factors and mRNA stabilization in
                   the MAPK-dependent increase in p21 (Cip-1/WAF1/mda6) protein levels in primary hepatocytes. Mol Biol Cell 2000;11:2915-32.
               18.  Lin AW, Barradas M, Stone JC, van Aelst L, Serrano M, et al. Premature senescence involving p53 and p16 is activated in response to
                   constitutive MEK/MAPK mitogenic signaling. Genes Dev 1998;12:3008-19.
               19.  Zhu J, Woods D, McMahon M, Bishop JM. Senescence of human fibroblasts induced by oncogenic Raf. Genes Dev 1998;12:2997-3007.
               20.  Wang  W,  Chen  JX,  Liao  R,  Deng  Q,  Zhou  JJ,  et  al.  Sequential  activation  of  the  MEK-extracellular  signal-regulated  kinase  and
                   MKK3/6-p38  mitogen-activated  protein  kinase  pathways  mediates  oncogenic  ras-induced  premature  senescence.  Mol  Cell  Biol
                   2002;22:3389-403.
               21.  Serrano  M,  Lin  AW,  McCurrach  ME,  Beach  D,  Lowe  SW.  Oncogenic  ras  provokes  premature  cell  senescence  associated  with
                   accumulation of p53 and p16INK4a. Cell 1997;88:593-602.
               22.  Palmero I, Pantoja C, Serrano M. p19ARF links the tumour suppressor p53 to Ras. Nature 1998;395:125-6.
               23.  Ferbeyre G, de Stanchina E, Lin AW, Querido E, McCurrach ME, et al. Oncogenic ras and p53 cooperate to induce cellular senescence.
                   Mol Cell Biol 2002;22:3497-508.
               24.  Ulisse S, Cinque B, Silvano G, Rucci N, Biordi L, et al. Erk-dependent cytosolic phospholipase A2 activity is induced by CD95 ligand
                   cross-linking in the mouse derived Sertoli cell line TM4 and is required to trigger apoptosis in CD95 bearing cells. Cell Death Differ
                   2000;7:916-24.
               25.  Drosopoulos KG, Roberts ML, Cermak L, Sasazuki T, Shirasawa S, et al. Transformation by oncogenic RAS sensitizes human colon
                   cells to TRAIL-induced apoptosis by up-regulating death receptor 4 and death receptor 5 through a MEK-dependent pathway. J Biol
                   Chem 2005;280:22856-67.
               26.  Jo  SK,  Cho  WY,  Sung  SA,  Kim  HK,  Won  NH.  MEK  inhibitor,  U0126,  attenuates  cisplatin-induced  renal  injury  by  decreasing
                   inflammation and apoptosis. Kidney Int 2005;67:458-66.
               27.  Tewari  R,  Sharma  V,  Koul  N,  Sen  E.  Involvement  of  miltefosine-mediated  ERK  activation  in  glioma  cell  apoptosis  through  Fas
                   regulation. J Neurochem 2008;107:616-27.
               28.  Shenoy K, Wu Y, Pervaiz S. LY303511 enhances TRAIL sensitivity of SHEP-1 neuroblastoma cells via hydrogen peroxide-mediated
                   mitogen-activated protein kinase activation and up-regulation of death receptors. Cancer Res 2009;69:1941-50.
               29.  Sheridan C, Brumatti G, Elgendy M, Brunet M, Martin SJ. An ERK-dependent pathway to Noxa expression regulates apoptosis by
                   platinum-based chemotherapeutic drugs. Oncogene 2010;29:6428-41.
               30.  Elgendy M, Sheridan C, Brumatti G, Martin SJ. Oncogenic Ras-induced expression of Noxa and Beclin-1 promotes autophagic cell
                   death and limits clonogenic survival. Mol Cell 2011;42:23-35.
               31.  Emery CM, Vijayendran KG, Zipser MC, Sawyer AM, Niu L, et al. MEK1 mutations confer resistance to MEK and B-RAF inhibition.
                   Proc Natl Acad Sci USA 2009;106:20411-6.
               32.  Yang J, Manson DK, Marr BP, Carvajal RD. Treatment of uveal melanoma: where are we now? Ther Adv Med Oncol 2018;10:1-17.
               33.  Thiery JP, Acloque H, Huang RY, Nieto MA. Epithelial-mesenchymal transitions in development and disease. Cell 2009;139:871-90.
               34.  Shin S, Dimitri CA, Yoon SO, Dowdle W, Blenis J. ERK2 but not ERK1 induces epithelial-to-mesenchymal transformation via DEF
                   motif-dependent signaling events. Mol Cell 2010;38:114-27.
               35.  Ichikawa K, Kubota Y, Nakamura T, Weng JS, Tomida T, et al. MCRIP1, an ERK substrate, mediates ERK-induced gene silencing
                   during epithelial-mesenchymal transition by regulating the co-repressor CtBP. Mol Cell 2015;58:35-46.
               36.  Weiss MB, Abel EV, Mayberry MM, Basile KJ, Berger AC, et al. TWIST1 is an ERK1/2 effector that promotes invasion and regulates
                   MMP-1 expression in human melanoma cells. Cancer Res 2012;72:6382-92.
               37.  Ye X, Weinberg RA. Epithelial-mesenchymal plasticity: a central regulator of cancer progression. Trends Cell Biol 2015;25:675-86.
               38.  Fischer  KR,  Durrans  A,  Lee  S,  Sheng  J,  Li  F,  et  al.  Epithelial-to-mesenchymal  transition  is  not  required  for  lung  metastasis  but
                   contributes to chemoresistance. Nature 2015;527:472-6.
               39.  Zheng X, Carstens JL, Kim J, Scheible M, Kaye J, et al. Epithelial-to-mesenchymal transition is dispensable for metastasis but induces
                   chemoresistance in pancreatic cancer. Nature 2015;527:525-30.
               40.  Unni AM, Harbourne B, Oh MH, Wild S, Ferrarone JR, et al. Hyperactivation of ERK by multiple mechanisms is toxic to RTK-RAS
                   mutation-driven lung adenocarcinoma cells. Elife 2018;7:e33718.
               41.  Kennedy AL, Morton JP, Manoharan I, Nelson DM, Jamieson NB, et al. Activation of the PIK3CA/AKT pathway suppresses senescence
                   induced by an activated RAS oncogene to promote tumorigenesis. Mol Cell 2011;42:36-49.
               42.  Fruman DA, Chiu H, Hopkins BD, Bagrodia S, Cantley LC, et al. The PI3K pathway in human disease. Cell 2017;170:605-35.
               43.  Manning BD, Toker A. AKT/PKB signaling: navigating the network. Cell 2017;169:381-405.
               44.  Kavanagh E, Joseph B. The hallmarks of CDKN1C (p57, KIP2) in cancer. Biochim Biophys Acta 2011;1816:50-6.
               45.  Figliola R, Busanello A, Vaccarello G, Maione R. Regulation of p57(KIP2) during muscle differentiation: role of Egr1, Sp1 and DNA
                   hypomethylation. J Mol Biol 2008;380:265-77.
               46.  Pateras IS, Apostolopoulou K, Niforou K, Kotsinas A, Gorgoulis VG. p57KIP2: "Kip"ing the cell under control. Mol Cancer Res
                   2009;7:1902-19.
               47.  Schlicker A, Beran G, Chresta CM, McWalter G, Pritchard A, et al. Subtypes of primary colorectal tumors correlate with response to
                   targeted treatment in colorectal cell lines. BMC Med Genomics 2012;5:66.
   57   58   59   60   61   62   63   64   65   66   67