Page 70 - Read Online
P. 70
Gurska et al. Cancer Drug Resist 2023;6:674-87 https://dx.doi.org/10.20517/cdr.2023.39 Page 686
42. Carlsten M, Järås M. Natural killer cells in myeloid malignancies: immune surveillance, NK cell dysfunction, and pharmacological
opportunities to bolster the endogenous NK cells. Front Immunol 2019;10:2357. DOI PubMed PMC
43. Kaweme NM, Zhou F. Optimizing NK cell-based immunotherapy in myeloid leukemia: abrogating an immunosuppressive
microenvironment. Front Immunol 2021;12:683381. DOI PubMed PMC
44. Raneros A, López-Larrea C, Suárez-Álvarez B. Acute myeloid leukemia and NK cells: two warriors confront each other.
Oncoimmunology 2019;8:e1539617. DOI PubMed PMC
45. Baragaño Raneros A, Martín-Palanco V, Fernandez AF, et al. Methylation of NKG2D ligands contributes to immune system evasion
in acute myeloid leukemia. Genes Immun 2015;16:71-82. DOI
46. Paczulla AM, Rothfelder K, Raffel S, et al. Absence of NKG2D ligands defines leukaemia stem cells and mediates their immune
evasion. Nature 2019;572:254-9. DOI PubMed PMC
47. Sallman DA, Brayer J, Sagatys EM, et al. NKG2D-based chimeric antigen receptor therapy induced remission in a relapsed/refractory
acute myeloid leukemia patient. Haematologica 2018;103:e424-6. DOI PubMed PMC
48. Driouk L, Gicobi JK, Kamihara Y, et al. Chimeric antigen receptor T cells targeting NKG2D-ligands show robust efficacy against
acute myeloid leukemia and T-cell acute lymphoblastic leukemia. Front Immunol 2020;11:580328. DOI PubMed PMC
49. Wu Z, Zhang H, Wu M, et al. Targeting the NKG2D/NKG2D-L axis in acute myeloid leukemia. Biomed Pharmacother
2021;137:111299. DOI
50. Wang Z, Guan W, Wang M, et al. AML1-ETO inhibits acute myeloid leukemia immune escape by CD48. Leuk Lymphoma
2021;62:937-43. DOI
51. Zhang T, Fang Q, Liu P, Wang P, Feng C, Wang J. Heme oxygenase 1 overexpression induces immune evasion of acute myeloid
leukemia against natural killer cells by inhibiting CD48. J Transl Med 2022;20:394. DOI PubMed PMC
52. Wang Z, Xiao Y, Guan W, et al. Acute myeloid leukemia immune escape by epigenetic CD48 silencing. Clin Sci 2020;134:261-71.
DOI
53. Barakos GP, Hatzimichael E. Microenvironmental features driving immune evasion in myelodysplastic syndromes and acute myeloid
leukemia. Diseases 2022;10:33. DOI PubMed PMC
54. Davids MS, Kim HT, Bachireddy P, et al. Ipilimumab for patients with relapse after allogeneic transplantation. N Engl J Med
2016;375:143-53. DOI
55. Zeidner JF, Vincent BG, Ivanova A, et al. Phase II trial of pembrolizumab after high-dose cytarabine in relapsed/refractory acute
myeloid leukemia. Blood Cancer Discov 2021;2:616-29. DOI PubMed PMC
56. Agrawal V, Croslin C, Beltran AL, et al. Promising safety and efficacy results from an ongoing phase 1b study of pembrolizumab
combined with decitabine in patients with relapsed/refractory (R/R) acute myeloid leukemia (AML). Blood 2022;140:6235-6. DOI
57. Buecklein VL, Warm M, Spiekermann K, et al. Trial in progress: an open-label phase II study of relatlimab with nivolumab in
combination with 5-azacytidine for the treatment of patients with relapsed/refractory and elderly patients with newly diagnosed acute
myeloid leukemia (AARON). Blood 2022;140:3227-8. DOI
58. Yang H, Bueso-Ramos C, DiNardo C, et al. Expression of PD-L1, PD-L2, PD-1 and CTLA4 in myelodysplastic syndromes is
enhanced by treatment with hypomethylating agents. Leukemia 2014;28:1280-8. DOI PubMed PMC
59. Garcia JS, Flamand Y, Penter L, et al. Ipilimumab plus decitabine for patients with MDS or AML in posttransplant or transplant-naïve
settings. Blood 2023;141:1884-8. DOI
60. Penter L, Liu Y, Wolff JO, et al. Mechanisms of response and resistance to combined decitabine and ipilimumab for advanced myeloid
disease. Blood 2023;141:1817-30. DOI PubMed PMC
61. Goswami M, Gui G, Dillon LW, et al. Pembrolizumab and decitabine for refractory or relapsed acute myeloid leukemia. J Immunother
Cancer 2022;10:e003392. DOI PubMed PMC
62. Rutella S, Vadakekolathu J, Mazziotta F, et al. Immune dysfunction signatures predict outcomes and define checkpoint blockade-
unresponsive microenvironments in acute myeloid leukemia. J Clin Invest 2022;132:e159579. DOI PubMed PMC
63. Daver N, Garcia-Manero G, Basu S, et al. Efficacy, safety, and biomarkers of response to azacitidine and nivolumab in relapsed/
refractory acute myeloid leukemia: a nonrandomized, open-label, phase II study. Cancer Discov 2019;9:370-83. DOI PubMed PMC
+
64. Radpour R, Riether C, Simillion C, Höpner S, Bruggmann R, Ochsenbein AF. CD8 T cells expand stem and progenitor cells in
favorable but not adverse risk acute myeloid leukemia. Leukemia 2019;33:2379-92. DOI
65. Wang M, Zhang C, Tian T, et al. Increased regulatory T cells in peripheral blood of acute myeloid leukemia patients rely on tumor
necrosis factor (TNF)-α-TNF receptor-2 pathway. Front Immunol 2018;9:1274. DOI PubMed PMC
66. Dong Y, Han Y, Huang Y, et al. PD-L1 is expressed and promotes the expansion of regulatory T cells in acute myeloid leukemia.
Front Immunol 2020;11:1710. DOI PubMed PMC
67. Taghiloo S, Asgarian-Omran H. Immune evasion mechanisms in acute myeloid leukemia: a focus on immune checkpoint pathways.
Crit Rev Oncol Hematol 2021;157:103164. DOI PubMed
68. Teague RM, Kline J. Immune evasion in acute myeloid leukemia: current concepts and future directions. J Immunother Cancer
2013;1:1. DOI PubMed
69. Tettamanti S, Pievani A, Biondi A, Dotti G, Serafini M. Catch me if you can: how AML and its niche escape immunotherapy.
Leukemia 2022;36:13-22. DOI PubMed PMC
70. Karachaliou N, Gonzalez-Cao M, Sosa A, et al. The combination of checkpoint immunotherapy and targeted therapy in cancer. Ann
Transl Med 2017;5:388. DOI PubMed PMC