Page 70 - Read Online
P. 70

Gurska et al. Cancer Drug Resist 2023;6:674-87  https://dx.doi.org/10.20517/cdr.2023.39                                           Page 686

               42.      Carlsten M, Järås M. Natural killer cells in myeloid malignancies: immune surveillance, NK cell dysfunction, and pharmacological
                   opportunities to bolster the endogenous NK cells. Front Immunol 2019;10:2357.  DOI  PubMed  PMC
               43.      Kaweme NM, Zhou F. Optimizing NK cell-based immunotherapy in myeloid leukemia: abrogating an immunosuppressive
                   microenvironment. Front Immunol 2021;12:683381.  DOI  PubMed  PMC
               44.      Raneros A, López-Larrea C, Suárez-Álvarez B. Acute myeloid leukemia and NK cells: two warriors confront each other.
                   Oncoimmunology 2019;8:e1539617.  DOI  PubMed  PMC
               45.      Baragaño Raneros A, Martín-Palanco V, Fernandez AF, et al. Methylation of NKG2D ligands contributes to immune system evasion
                   in acute myeloid leukemia. Genes Immun 2015;16:71-82.  DOI
               46.      Paczulla AM, Rothfelder K, Raffel S, et al. Absence of NKG2D ligands defines leukaemia stem cells and mediates their immune
                   evasion. Nature 2019;572:254-9.  DOI  PubMed  PMC
               47.      Sallman DA, Brayer J, Sagatys EM, et al. NKG2D-based chimeric antigen receptor therapy induced remission in a relapsed/refractory
                   acute myeloid leukemia patient. Haematologica 2018;103:e424-6.  DOI  PubMed  PMC
               48.      Driouk L, Gicobi JK, Kamihara Y, et al. Chimeric antigen receptor T cells targeting NKG2D-ligands show robust efficacy against
                   acute myeloid leukemia and T-cell acute lymphoblastic leukemia. Front Immunol 2020;11:580328.  DOI  PubMed  PMC
               49.      Wu  Z,  Zhang  H,  Wu  M,  et  al.  Targeting  the  NKG2D/NKG2D-L  axis  in  acute  myeloid  leukemia.  Biomed  Pharmacother
                   2021;137:111299.  DOI
               50.      Wang Z, Guan W, Wang M, et al. AML1-ETO inhibits acute myeloid leukemia immune escape by CD48. Leuk Lymphoma
                   2021;62:937-43.  DOI
               51.      Zhang T, Fang Q, Liu P, Wang P, Feng C, Wang J. Heme oxygenase 1 overexpression induces immune evasion of acute myeloid
                   leukemia against natural killer cells by inhibiting CD48. J Transl Med 2022;20:394.  DOI  PubMed  PMC
               52.      Wang Z, Xiao Y, Guan W, et al. Acute myeloid leukemia immune escape by epigenetic CD48 silencing. Clin Sci 2020;134:261-71.
                   DOI
               53.      Barakos GP, Hatzimichael E. Microenvironmental features driving immune evasion in myelodysplastic syndromes and acute myeloid
                   leukemia. Diseases 2022;10:33.  DOI  PubMed  PMC
               54.      Davids MS, Kim HT, Bachireddy P, et al. Ipilimumab for patients with relapse after allogeneic transplantation. N Engl J Med
                   2016;375:143-53.  DOI
               55.      Zeidner JF, Vincent BG, Ivanova A, et al. Phase II trial of pembrolizumab after high-dose cytarabine in relapsed/refractory acute
                   myeloid leukemia. Blood Cancer Discov 2021;2:616-29.  DOI  PubMed  PMC
               56.      Agrawal V, Croslin C, Beltran AL, et al. Promising safety and efficacy results from an ongoing phase 1b study of pembrolizumab
                   combined with decitabine in patients with relapsed/refractory (R/R) acute myeloid leukemia (AML). Blood 2022;140:6235-6.  DOI
               57.      Buecklein VL, Warm M, Spiekermann K, et al. Trial in progress: an open-label phase II study of relatlimab with nivolumab in
                   combination with 5-azacytidine for the treatment of patients with relapsed/refractory and elderly patients with newly diagnosed acute
                   myeloid leukemia (AARON). Blood 2022;140:3227-8.  DOI
               58.      Yang H, Bueso-Ramos C, DiNardo C, et al. Expression of PD-L1, PD-L2, PD-1 and CTLA4 in myelodysplastic syndromes is
                   enhanced by treatment with hypomethylating agents. Leukemia 2014;28:1280-8.  DOI  PubMed  PMC
               59.      Garcia JS, Flamand Y, Penter L, et al. Ipilimumab plus decitabine for patients with MDS or AML in posttransplant or transplant-naïve
                   settings. Blood 2023;141:1884-8.  DOI
               60.      Penter L, Liu Y, Wolff JO, et al. Mechanisms of response and resistance to combined decitabine and ipilimumab for advanced myeloid
                   disease. Blood 2023;141:1817-30.  DOI  PubMed  PMC
               61.      Goswami M, Gui G, Dillon LW, et al. Pembrolizumab and decitabine for refractory or relapsed acute myeloid leukemia. J Immunother
                   Cancer 2022;10:e003392.  DOI  PubMed  PMC
               62.      Rutella S, Vadakekolathu J, Mazziotta F, et al. Immune dysfunction signatures predict outcomes and define checkpoint blockade-
                   unresponsive microenvironments in acute myeloid leukemia. J Clin Invest 2022;132:e159579.  DOI  PubMed  PMC
               63.      Daver N, Garcia-Manero G, Basu S, et al. Efficacy, safety, and biomarkers of response to azacitidine and nivolumab in relapsed/
                   refractory acute myeloid leukemia: a nonrandomized, open-label, phase II study. Cancer Discov 2019;9:370-83.  DOI  PubMed  PMC
                                                                            +
               64.      Radpour R, Riether C, Simillion C, Höpner S, Bruggmann R, Ochsenbein AF. CD8  T cells expand stem and progenitor cells in
                   favorable but not adverse risk acute myeloid leukemia. Leukemia 2019;33:2379-92.  DOI
               65.      Wang M, Zhang C, Tian T, et al. Increased regulatory T cells in peripheral blood of acute myeloid leukemia patients rely on tumor
                   necrosis factor (TNF)-α-TNF receptor-2 pathway. Front Immunol 2018;9:1274.  DOI  PubMed  PMC
               66.      Dong Y, Han Y, Huang Y, et al. PD-L1 is expressed and promotes the expansion of regulatory T cells in acute myeloid leukemia.
                   Front Immunol 2020;11:1710.  DOI  PubMed  PMC
               67.      Taghiloo S, Asgarian-Omran H. Immune evasion mechanisms in acute myeloid leukemia: a focus on immune checkpoint pathways.
                   Crit Rev Oncol Hematol 2021;157:103164.  DOI  PubMed
               68.      Teague RM, Kline J. Immune evasion in acute myeloid leukemia: current concepts and future directions. J Immunother Cancer
                   2013;1:1.  DOI  PubMed
               69.      Tettamanti S, Pievani A, Biondi A, Dotti G, Serafini M. Catch me if you can: how AML and its niche escape immunotherapy.
                   Leukemia 2022;36:13-22.  DOI  PubMed  PMC
               70.      Karachaliou N, Gonzalez-Cao M, Sosa A, et al. The combination of checkpoint immunotherapy and targeted therapy in cancer. Ann
                   Transl Med 2017;5:388.  DOI  PubMed  PMC
   65   66   67   68   69   70   71   72   73   74   75