Page 69 - Read Online
P. 69

Page 685                                            Gurska et al. Cancer Drug Resist 2023;6:674-87  https://dx.doi.org/10.20517/cdr.2023.39

                   Natl Compr Canc Netw 2019;17:721-49.  DOI  PubMed
               13.      Vago L, Gojo I. Immune escape and immunotherapy of acute myeloid leukemia. J Clin Invest 2020;130:1552-64.  DOI  PubMed
                   PMC
               14.      Ismail MM, Abdulateef NAB. Bone marrow T-cell percentage: a novel prognostic indicator in acute myeloid leukemia. Int J Hematol
                   2017;105:453-64.  DOI  PubMed
                                                           +   +
                                                                    lo
               15.      Zhang S, Han Y, Wu J, et al. Elevated frequencies of CD4 CD25 CD127  regulatory T cells is associated to poor prognosis in
                   patients with acute myeloid leukemia. Int J Cancer 2011;129:1373-81.  DOI  PubMed
               16.      Murphy K, Weaver C. Janeway’s Immunobiology. 9th ed. New York, NY: Garland Science, Taylor & Francis Group, LLC; 2017. p.
                   139-68. Available from: https://inmunologos.files.wordpress.com/2020/08/janeways-immunobiology-9th-ed_booksmedicos.org_.pdf.
                   [Last accessed on 22 Sep 2023].
               17.      Devaiah BN, Singer DS. CIITA and its dual roles in MHC gene transcription. Front Immunol 2013;4:476.  DOI  PubMed  PMC
               18.      Chen L, Flies DB. Molecular mechanisms of T cell co-stimulation and co-inhibition. Nat Rev Immunol 2013;13:227-42.  DOI  PubMed
                   PMC
               19.      Anderson AC, Joller N, Kuchroo VK. Lag-3, Tim-3, and TIGIT: co-inhibitory receptors with specialized functions in immune
                   regulation. Immunity 2016;44:989-1004.  DOI  PubMed  PMC
               20.      Giannopoulos K. Targeting immune signaling checkpoints in acute myeloid leukemia. J Clin Med 2019;8:236.  DOI  PubMed  PMC
               21.      Wang H, Kaur G, Sankin AI, Chen F, Guan F, Zang X. Immune checkpoint blockade and CAR-T cell therapy in hematologic
                   malignancies. J Hematol Oncol 2019;12:59.  DOI  PubMed  PMC
               22.      Lamble AJ, Lind EF. Targeting the immune microenvironment in acute myeloid leukemia: a focus on T cell immunity. Front Oncol
                   2018;8:213.  DOI  PubMed  PMC
               23.      Klempner SJ, Fabrizio D, Bane S, et al. Tumor mutational burden as a predictive biomarker for response to immune checkpoint
                   inhibitors: a review of current evidence. Oncologist 2020;25:e147-59.  DOI  PubMed  PMC
               24.      Chen J, Kao YR, Sun D, et al. Myelodysplastic syndrome progression to acute myeloid leukemia at the stem cell level. Nat Med
                   2019;25:103-10.  DOI  PubMed  PMC
               25.      Zhou Q, Munger ME, Highfill SL, et al. Program death-1 signaling and regulatory T cells collaborate to resist the function of
                   adoptively transferred cytotoxic T lymphocytes in advanced acute myeloid leukemia. Blood 2010;116:2484-93.  DOI  PubMed  PMC
                                                     +
               26.      Kong Y, Zhang J, Claxton DF, et al. PD-1 TIM-3  T cells associate with and predict leukemia relapse in AML patients post
                                                hi
                   allogeneic stem cell transplantation. Blood Cancer J 2015;5:e330.  DOI  PubMed  PMC
               27.      Noviello M, Manfredi F, Ruggiero E, et al. Bone marrow central memory and memory stem T-cell exhaustion in AML patients
                   relapsing after HSCT. Nat Commun 2019;10:1065.  DOI  PubMed  PMC
               28.      Chen C, Liang C, Wang S, et al. Expression patterns of immune checkpoints in acute myeloid leukemia. J Hematol Oncol 2020;13:28.
                   DOI  PubMed  PMC
               29.      Brodská B, Otevřelová P, Šálek C, Fuchs O, Gašová Z, Kuželová K. High PD-L1 expression predicts for worse outcome of leukemia
                   patients with concomitant NPM1 and FLT3 mutations. Int J Mol Sci 2019;20:2823.  DOI  PubMed  PMC
               30.      Berthon C, Driss V, Liu J, et al. In acute myeloid leukemia, B7-H1 (PD-L1) protection of blasts from cytotoxic T cells is induced by
                   TLR ligands and interferon-gamma and can be reversed using MEK inhibitors. Cancer Immunol Immunother 2010;59:1839-49.  DOI
                   PubMed  PMC
               31.      Pistillo MP, Tazzari PL, Palmisano GL, et al. CTLA-4 is not restricted to the lymphoid cell lineage and can function as a target
                   molecule for apoptosis induction of leukemic cells. Blood 2003;101:202-9.  DOI
               32.      Laurent S, Palmisano GL, Martelli AM, et al. CTLA-4 expressed by chemoresistant, as well as untreated, myeloid leukaemia cells can
                   be targeted with ligands to induce apoptosis. Br J Haematol 2007;136:597-608.  DOI
               33.      Christopher MJ, Petti AA, Rettig MP, et al. Immune escape of relapsed AML cells after allogeneic transplantation. N Engl J Med
                   2018;379:2330-41.  DOI  PubMed  PMC
               34.      Eagle K, Harada T, Kalfon J, et al. Transcriptional plasticity drives leukemia immune escape. Blood Cancer Discov 2022;3:394-409.
                   DOI  PubMed  PMC
               35.      Ho JNHG, Schmidt D, Lowinus T, et al. Targeting MDM2 enhances antileukemia immunity after allogeneic transplantation via MHC-
                   II and TRAIL-R1/2 upregulation. Blood 2022;140:1167-81.  DOI  PubMed  PMC
               36.      Corradi G, Bassani B, Simonetti G, et al. Release of IFNγ by acute myeloid leukemia cells remodels bone marrow immune
                   microenvironment by inducing regulatory T cells. Clin Cancer Res 2022;28:3141-55.  DOI
               37.      Wang R, Feng W, Wang H, et al. Blocking migration of regulatory T cells to leukemic hematopoietic microenvironment delays disease
                   progression in mouse leukemia model. Cancer Lett 2020;469:151-61.  DOI
               38.      Chan CJ, Smyth MJ, Martinet L. Molecular mechanisms of natural killer cell activation in response to cellular stress. Cell Death Differ
                   2014;21:5-14.  DOI  PubMed  PMC
               39.      Lion E, Willemen Y, Berneman ZN, Van Tendeloo VF, Smits EL. Natural killer cell immune escape in acute myeloid leukemia.
                   Leukemia 2012;26:2019-26.  DOI  PubMed
               40.      Khaznadar Z, Boissel N, Agaugué S, et al. Defective NK cells in acute myeloid leukemia patients at diagnosis are associated with blast
                   transcriptional signatures of immune evasion. J Immunol 2015;195:2580-90.  DOI
               41.      Xu J, Niu T. Natural killer cell-based immunotherapy for acute myeloid leukemia. J Hematol Oncol 2020;13:167.  DOI  PubMed
                   PMC
   64   65   66   67   68   69   70   71   72   73   74