Page 69 - Read Online
P. 69
Page 685 Gurska et al. Cancer Drug Resist 2023;6:674-87 https://dx.doi.org/10.20517/cdr.2023.39
Natl Compr Canc Netw 2019;17:721-49. DOI PubMed
13. Vago L, Gojo I. Immune escape and immunotherapy of acute myeloid leukemia. J Clin Invest 2020;130:1552-64. DOI PubMed
PMC
14. Ismail MM, Abdulateef NAB. Bone marrow T-cell percentage: a novel prognostic indicator in acute myeloid leukemia. Int J Hematol
2017;105:453-64. DOI PubMed
+ +
lo
15. Zhang S, Han Y, Wu J, et al. Elevated frequencies of CD4 CD25 CD127 regulatory T cells is associated to poor prognosis in
patients with acute myeloid leukemia. Int J Cancer 2011;129:1373-81. DOI PubMed
16. Murphy K, Weaver C. Janeway’s Immunobiology. 9th ed. New York, NY: Garland Science, Taylor & Francis Group, LLC; 2017. p.
139-68. Available from: https://inmunologos.files.wordpress.com/2020/08/janeways-immunobiology-9th-ed_booksmedicos.org_.pdf.
[Last accessed on 22 Sep 2023].
17. Devaiah BN, Singer DS. CIITA and its dual roles in MHC gene transcription. Front Immunol 2013;4:476. DOI PubMed PMC
18. Chen L, Flies DB. Molecular mechanisms of T cell co-stimulation and co-inhibition. Nat Rev Immunol 2013;13:227-42. DOI PubMed
PMC
19. Anderson AC, Joller N, Kuchroo VK. Lag-3, Tim-3, and TIGIT: co-inhibitory receptors with specialized functions in immune
regulation. Immunity 2016;44:989-1004. DOI PubMed PMC
20. Giannopoulos K. Targeting immune signaling checkpoints in acute myeloid leukemia. J Clin Med 2019;8:236. DOI PubMed PMC
21. Wang H, Kaur G, Sankin AI, Chen F, Guan F, Zang X. Immune checkpoint blockade and CAR-T cell therapy in hematologic
malignancies. J Hematol Oncol 2019;12:59. DOI PubMed PMC
22. Lamble AJ, Lind EF. Targeting the immune microenvironment in acute myeloid leukemia: a focus on T cell immunity. Front Oncol
2018;8:213. DOI PubMed PMC
23. Klempner SJ, Fabrizio D, Bane S, et al. Tumor mutational burden as a predictive biomarker for response to immune checkpoint
inhibitors: a review of current evidence. Oncologist 2020;25:e147-59. DOI PubMed PMC
24. Chen J, Kao YR, Sun D, et al. Myelodysplastic syndrome progression to acute myeloid leukemia at the stem cell level. Nat Med
2019;25:103-10. DOI PubMed PMC
25. Zhou Q, Munger ME, Highfill SL, et al. Program death-1 signaling and regulatory T cells collaborate to resist the function of
adoptively transferred cytotoxic T lymphocytes in advanced acute myeloid leukemia. Blood 2010;116:2484-93. DOI PubMed PMC
+
26. Kong Y, Zhang J, Claxton DF, et al. PD-1 TIM-3 T cells associate with and predict leukemia relapse in AML patients post
hi
allogeneic stem cell transplantation. Blood Cancer J 2015;5:e330. DOI PubMed PMC
27. Noviello M, Manfredi F, Ruggiero E, et al. Bone marrow central memory and memory stem T-cell exhaustion in AML patients
relapsing after HSCT. Nat Commun 2019;10:1065. DOI PubMed PMC
28. Chen C, Liang C, Wang S, et al. Expression patterns of immune checkpoints in acute myeloid leukemia. J Hematol Oncol 2020;13:28.
DOI PubMed PMC
29. Brodská B, Otevřelová P, Šálek C, Fuchs O, Gašová Z, Kuželová K. High PD-L1 expression predicts for worse outcome of leukemia
patients with concomitant NPM1 and FLT3 mutations. Int J Mol Sci 2019;20:2823. DOI PubMed PMC
30. Berthon C, Driss V, Liu J, et al. In acute myeloid leukemia, B7-H1 (PD-L1) protection of blasts from cytotoxic T cells is induced by
TLR ligands and interferon-gamma and can be reversed using MEK inhibitors. Cancer Immunol Immunother 2010;59:1839-49. DOI
PubMed PMC
31. Pistillo MP, Tazzari PL, Palmisano GL, et al. CTLA-4 is not restricted to the lymphoid cell lineage and can function as a target
molecule for apoptosis induction of leukemic cells. Blood 2003;101:202-9. DOI
32. Laurent S, Palmisano GL, Martelli AM, et al. CTLA-4 expressed by chemoresistant, as well as untreated, myeloid leukaemia cells can
be targeted with ligands to induce apoptosis. Br J Haematol 2007;136:597-608. DOI
33. Christopher MJ, Petti AA, Rettig MP, et al. Immune escape of relapsed AML cells after allogeneic transplantation. N Engl J Med
2018;379:2330-41. DOI PubMed PMC
34. Eagle K, Harada T, Kalfon J, et al. Transcriptional plasticity drives leukemia immune escape. Blood Cancer Discov 2022;3:394-409.
DOI PubMed PMC
35. Ho JNHG, Schmidt D, Lowinus T, et al. Targeting MDM2 enhances antileukemia immunity after allogeneic transplantation via MHC-
II and TRAIL-R1/2 upregulation. Blood 2022;140:1167-81. DOI PubMed PMC
36. Corradi G, Bassani B, Simonetti G, et al. Release of IFNγ by acute myeloid leukemia cells remodels bone marrow immune
microenvironment by inducing regulatory T cells. Clin Cancer Res 2022;28:3141-55. DOI
37. Wang R, Feng W, Wang H, et al. Blocking migration of regulatory T cells to leukemic hematopoietic microenvironment delays disease
progression in mouse leukemia model. Cancer Lett 2020;469:151-61. DOI
38. Chan CJ, Smyth MJ, Martinet L. Molecular mechanisms of natural killer cell activation in response to cellular stress. Cell Death Differ
2014;21:5-14. DOI PubMed PMC
39. Lion E, Willemen Y, Berneman ZN, Van Tendeloo VF, Smits EL. Natural killer cell immune escape in acute myeloid leukemia.
Leukemia 2012;26:2019-26. DOI PubMed
40. Khaznadar Z, Boissel N, Agaugué S, et al. Defective NK cells in acute myeloid leukemia patients at diagnosis are associated with blast
transcriptional signatures of immune evasion. J Immunol 2015;195:2580-90. DOI
41. Xu J, Niu T. Natural killer cell-based immunotherapy for acute myeloid leukemia. J Hematol Oncol 2020;13:167. DOI PubMed
PMC