Page 108 - Read Online
P. 108
Page 763 Remley et al. Cancer Drug Resist 2023;6:748-67 https://dx.doi.org/10.20517/cdr.2023.63
CD8+ T cells. J Clin Invest 2006;116:2777-90. DOI PubMed PMC
16. Zea AH, Rodriguez PC, Atkins MB, et al. Arginase-producing myeloid suppressor cells in renal cell carcinoma patients: a mechanism
of tumor evasion. Cancer Res 2005;65:3044-8. DOI
17. Mundy-Bosse BL, Lesinski GB, Jaime-Ramirez AC, et al. Myeloid-derived suppressor cell inhibition of the IFN response in tumor-
bearing mice. Cancer Res 2011;71:5101-10. DOI PubMed PMC
18. Chouaib S, Noman MZ, Kosmatopoulos K, Curran MA. Hypoxic stress: obstacles and opportunities for innovative immunotherapy of
cancer. Oncogene 2017;36:439-45. DOI PubMed PMC
19. Corbet C, Feron O. Tumour acidosis: from the passenger to the driver’s seat. Nat Rev Cancer 2017;17:577-93. DOI
20. Colegio OR, Chu NQ, Szabo AL, et al. Functional polarization of tumour-associated macrophages by tumour-derived lactic acid.
Nature 2014;513:559-63. DOI PubMed PMC
21. Hayes C, Donohoe CL, Davern M, Donlon NE. The oncogenic and clinical implications of lactate induced immunosuppression in the
tumour microenvironment. Cancer Lett 2021;500:75-86. DOI PubMed
22. Leach DR, Krummel MF, Allison JP. Enhancement of antitumor immunity by CTLA-4 blockade. Science 1996;271:1734-6. DOI
PubMed
23. Ishida Y, Agata Y, Shibahara K, Honjo T. Induced expression of PD-1, a novel member of the immunoglobulin gene superfamily,
upon programmed cell death. EMBO J 1992;11:3887-95. DOI PubMed PMC
24. Rizvi NA, Hellmann MD, Snyder A, et al. Cancer immunology. Mutational landscape determines sensitivity to PD-1 blockade in
non-small cell lung cancer. Science 2015;348:124-8. DOI PubMed PMC
25. Rizvi H, Sanchez-Vega F, La K, et al. Molecular determinants of response to anti-programmed cell death (PD)-1 and anti-
programmed death-ligand 1 (PD-L1) blockade in patients with non-small-cell lung cancer profiled with targeted next-generation
sequencing. J Clin Oncol 2018;36:633-41. DOI PubMed PMC
26. Strickland LN, Faraoni EY, Ruan W, Yuan X, Eltzschig HK, Bailey-Lundberg JM. The resurgence of the Adora2b receptor as an
immunotherapeutic target in pancreatic cancer. Front Immunol 2023;14:1163585. DOI PubMed PMC
27. Rudensky AY. Regulatory T cells and Foxp3. Immunol Rev 2011;241:260-8. DOI PubMed PMC
28. Yang L, Huang J, Ren X, et al. Abrogation of TGFβ signaling in mammary carcinomas recruits Gr-1+CD11b+ myeloid cells that
promote metastasis. Cancer Cell 2008;13:23-35. DOI
29. Noy R, Pollard JW. Tumor-associated macrophages: from mechanisms to therapy. Immunity 2014;41:49-61. DOI PubMed PMC
30. Highfill SL, Cui Y, Giles AJ, et al. Disruption of CXCR2-mediated MDSC tumor trafficking enhances anti-PD1 efficacy. Sci Transl
Med 2014;6:237ra67. DOI PubMed PMC
31. Najafi M, Farhood B, Mortezaee K. Contribution of regulatory T cells to cancer: a review. J Cell Physiol 2019;234:7983-93. DOI
32. Liu C, Peng W, Xu C, et al. BRAF inhibition increases tumor infiltration by T cells and enhances the antitumor activity of adoptive
immunotherapy in mice. Clin Cancer Res 2013;19:393-403. DOI PubMed PMC
33. Semenza GL. Oxygen sensing, homeostasis, and disease. N Engl J Med 2011;365:537-47. DOI PubMed
34. Eltzschig HK, Abdulla P, Hoffman E, et al. HIF-1-dependent repression of equilibrative nucleoside transporter (ENT) in hypoxia. J
Exp Med 2005;202:1493-505. DOI PubMed PMC
35. Pugh CW, Ratcliffe PJ. Regulation of angiogenesis by hypoxia: role of the HIF system. Nat Med 2003;9:677-84. DOI PubMed
36. Eckle T, Krahn T, Grenz A, et al. Cardioprotection by ecto-5'-nucleotidase (CD73) and A2B adenosine receptors. Circulation
2007;115:1581-90. DOI PubMed
37. Zhang B. CD73 promotes tumor growth and metastasis. Oncoimmunology 2012;1:67-70. DOI PubMed PMC
38. Gao ZW, Dong K, Zhang HZ. The roles of CD73 in cancer. Biomed Res Int 2014;2014:460654. DOI PubMed PMC
39. Allard B, Longhi MS, Robson SC, Stagg J. The ectonucleotidases CD39 and CD73: novel checkpoint inhibitor targets. Immunol Rev
2017;276:121-44. DOI PubMed PMC
40. Beavis PA, Slaney CY, Milenkovski N, et al. CD73: a potential biomarker for anti-PD-1 therapy. Oncoimmunology
2015;4:e1046675. DOI PubMed PMC
41. Giannone G, Ghisoni E, Genta S, et al. Immuno-metabolism and microenvironment in cancer: key players for immunotherapy. Int J
Mol Sci 2020;21:4414. DOI PubMed PMC
42. Linnemann C, Schildberg FA, Schurich A, et al. Adenosine regulates CD8 T-cell priming by inhibition of membrane-proximal T-cell
receptor signalling. Immunology 2009;128:e728-37. DOI PubMed PMC
43. Csóka B, Selmeczy Z, Koscsó B, et al. Adenosine promotes alternative macrophage activation via A2A and A2B receptors. FASEB J
2012;26:376-86. DOI PubMed PMC
44. Antonioli L, Blandizzi C, Pacher P, Haskó G. Immunity, inflammation and cancer: a leading role for adenosine. Nat Rev Cancer
2013;13:842-57. DOI
45. McColl SR, St-Onge M, Dussault AA, et al. Immunomodulatory impact of the A 2A adenosine receptor on the profile of chemokines
produced by neutrophils. FASEB J 2006;20:187-9. DOI PubMed PMC
46. Sahai E, Astsaturov I, Cukierman E, et al. A framework for advancing our understanding of cancer-associated fibroblasts. Nat Rev
Cancer 2020;20:174-86. DOI PubMed PMC
47. Fordyce C, Fessenden T, Pickering C, et al. DNA damage drives an activin a-dependent induction of cyclooxygenase-2 in
premalignant cells and lesions. Cancer Prev Res 2010;3:190-201. DOI PubMed PMC
48. Fordyce CA, Patten KT, Fessenden TB, et al. Cell-extrinsic consequences of epithelial stress: activation of protumorigenic tissue