Page 111 - Read Online
P. 111

Remley et al. Cancer Drug Resist 2023;6:748-67  https://dx.doi.org/10.20517/cdr.2023.63  Page 766

               111.      Le DT, Durham JN, Smith KN, et al. Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade. Science
                    2017;357:409-13.  DOI  PubMed  PMC
               112.      Pauken KE, Wherry EJ. Overcoming T cell exhaustion in infection and cancer. Trends Immunol 2015;36:265-76.  DOI  PubMed
                    PMC
               113.      Young A, Mittal D, Stagg J, Smyth MJ. Targeting cancer-derived adenosine: new therapeutic approaches. Cancer Discov
                    2014;4:879-88.  DOI  PubMed
               114.      Antonioli L, Fornai M, Blandizzi C, Pacher P, Haskó G. Adenosine signaling and the immune system: when a lot could be too much.
                    Immunol Lett 2019;205:9-15.  DOI  PubMed
               115.      Fredholm BB. Adenosine, an endogenous distress signal, modulates tissue damage and repair. Cell Death Differ 2007;14:1315-23.
                    DOI  PubMed
               116.      Robson SC, Wu Y, Sun X, Knosalla C, Dwyer K, Enjyoji K. Ectonucleotidases of CD39 family modulate vascular inflammation and
                    thrombosis in transplantation. Semin Thromb Hemost 2005;31:217-33.  DOI
               117.      Picher M, Burch LH, Hirsh AJ, Spychala J, Boucher RC. Ecto 5'-nucleotidase and nonspecific alkaline phosphatase. Two AMP-
                    hydrolyzing ectoenzymes with distinct roles in human airways. J Biol Chem 2003;278:13468-79.  DOI  PubMed
               118.      Yegutkin GG. Nucleotide- and nucleoside-converting ectoenzymes: important modulators of purinergic signalling cascade. Biochim
                    Biophys Acta 2008;1783:673-94.  DOI  PubMed
               119.      Mittal D, Sinha D, Barkauskas D, et al. Adenosine 2B receptor expression on cancer cells promotes metastasis. Cancer Res
                    2016;76:4372-82.  DOI
               120.      Costa A, Kieffer Y, Scholer-Dahirel A, et al. Fibroblast heterogeneity and immunosuppressive environment in human breast cancer.
                    Cancer Cell 2018;33:463-79.e10.  DOI
               121.      Turcotte M, Spring K, Pommey S, et al. CD73 is associated with poor prognosis in high-grade serous ovarian cancer. Cancer Res
                    2015;75:4494-503.  DOI
               122.      Yu M, Guo G, Huang L, et al. CD73 on cancer-associated fibroblasts enhanced by the A -mediated feedforward circuit enforces an
                                                                             2B
                    immune checkpoint. Nat Commun 2020;11:515.  DOI  PubMed  PMC
               123.      Maj T, Wang W, Crespo J, et al. Oxidative stress controls regulatory T cell apoptosis and suppressor activity and PD-L1-blockade
                    resistance in tumor. Nat Immunol 2017;18:1332-41.  DOI  PubMed  PMC
               124.      Limagne E, Euvrard R, Thibaudin M, et al. Accumulation of MDSC and Th17 cells in patients with metastatic colorectal cancer
                    predicts the efficacy of a FOLFOX-bevacizumab drug treatment regimen. Cancer Res 2016;76:5241-52.  DOI
               125.      Chalmin F, Mignot G, Bruchard M, et al. Stat3 and Gfi-1 transcription factors control Th17 cell immunosuppressive activity via the
                    regulation of ectonucleotidase expression. Immunity 2012;36:362-73.  DOI
               126.      Hay  CM,  Sult  E,  Huang  Q,  et  al.  Targeting  CD73  in  the  tumor  microenvironment  with  MEDI9447.  Oncoimmunology
                    2016;5:e1208875.  DOI  PubMed  PMC
               127.      Allard B, Beavis PA, Darcy PK, Stagg J. Immunosuppressive activities of adenosine in cancer. Curr Opin Pharmacol 2016;29:7-16.
                    DOI  PubMed
               128.      Allard B, Turcotte M, Spring K, Pommey S, Royal I, Stagg J. Anti-CD73 therapy impairs tumor angiogenesis. Int J Cancer
                    2014;134:1466-73.  DOI  PubMed
               129.      Feng L, Sun X, Csizmadia E, et al. Vascular CD39/ENTPD1 directly promotes tumor cell growth by scavenging extracellular
                    adenosine triphosphate. Neoplasia 2011;13:206-16.  DOI  PubMed  PMC
               130.      Jackson SW, Hoshi T, Wu Y, et al. Disordered purinergic signaling inhibits pathological angiogenesis in cd39/Entpd1-null mice. Am
                    J Pathol 2007;171:1395-404.  DOI  PubMed  PMC
               131.      Sun X, Wu Y, Gao W, et al. CD39/ENTPD1 expression by CD4+Foxp3+ regulatory T cells promotes hepatic metastatic tumor
                    growth in mice. Gastroenterology 2010;139:1030-40.  DOI  PubMed  PMC
               132.      Künzli BM, Berberat PO, Giese T, et al. Upregulation of CD39/NTPDases and P2 receptors in human pancreatic disease. Am J
                    Physiol Gastrointest Liver Physiol 2007;292:G223-30.  DOI
               133.      Zhang B, Cheng B, Li FS, et al. High expression of CD39/ENTPD1 in malignant epithelial cells of human rectal adenocarcinoma.
                    Tumour Biol 2015;36:9411-9.  DOI
               134.      Borea PA, Gessi S, Merighi S, Varani K. Adenosine as a multi-signalling guardian angel in human diseases: when, where and how
                    does it exert its protective effects? Trends Pharmacol Sci 2016;37:419-34.  DOI  PubMed
               135.      Huang Y, Gu Z, Fan Y, et al. Inhibition of the adenosinergic pathway: the indispensable part of oncological therapy in the future.
                    Purinergic Signal 2019;15:53-67.  DOI  PubMed  PMC
               136.      Vecchio EA, White PJ, May LT. The adenosine A  G protein-coupled receptor: recent advances and therapeutic implications.
                                                      2B
                    Pharmacol Ther 2019;198:20-33.  DOI  PubMed
                                                                                                         +
               137.      Ohta A, Kini R, Ohta A, Subramanian M, Madasu M, Sitkovsky M. The development and immunosuppressive functions of CD4
                        +
                             +
                    CD25  FoxP3  regulatory T cells are under influence of the adenosine-A2A adenosine receptor pathway. Front Immunol 2012;3:190.
                    DOI  PubMed  PMC
               138.      Leone RD, Sun IM, Oh MH, et al. Inhibition of the adenosine A2a receptor modulates expression of T cell coinhibitory receptors and
                    improves effector function for enhanced checkpoint blockade and ACT in murine cancer models. Cancer Immunol Immunother
                    2018;67:1271-84.  DOI
               139.      Zarek PE, Huang CT, Lutz ER, et al. A2A receptor signaling promotes peripheral tolerance by inducing T-cell anergy and the
   106   107   108   109   110   111   112   113   114   115   116