Page 109 - Read Online
P. 109
Remley et al. Cancer Drug Resist 2023;6:748-67 https://dx.doi.org/10.20517/cdr.2023.63 Page 764
phenotypes. Breast Cancer Res 2012;14:R155. DOI PubMed PMC
49. Fearon DT. The carcinoma-associated fibroblast expressing fibroblast activation protein and escape from immune surveillance.
Cancer Immunol Res 2014;2:187-93. DOI PubMed
50. Albrengues J, Bourget I, Pons C, et al. LIF mediates proinvasive activation of stromal fibroblasts in cancer. Cell Rep 2014;7:1664-78.
DOI
51. Albrengues J, Bertero T, Grasset E, et al. Epigenetic switch drives the conversion of fibroblasts into proinvasive cancer-associated
fibroblasts. Nat Commun 2015;6:10204. DOI PubMed PMC
52. Calvo F, Ege N, Grande-Garcia A, et al. Mechanotransduction and YAP-dependent matrix remodelling is required for the generation
and maintenance of cancer-associated fibroblasts. Nat Cell Biol 2013;15:637-46. DOI PubMed PMC
53. Strell C, Paulsson J, Jin SB, et al. Impact of epithelial-stromal interactions on peritumoral fibroblasts in ductal carcinoma in situ. J
Natl Cancer Inst 2019;111:983-95. DOI PubMed PMC
54. Hirata E, Girotti MR, Viros A, et al. Intravital imaging reveals how BRAF inhibition generates drug-tolerant microenvironments with
high integrin β1/FAK signaling. Cancer Cell 2015;27:574-88. DOI PubMed PMC
55. Hirata E, Sahai E. Tumor microenvironment and differential responses to therapy. Cold Spring Harb Perspect Med 2017;7:a026781.
DOI PubMed PMC
56. Sun Y, Campisi J, Higano C, et al. Treatment-induced damage to the tumor microenvironment promotes prostate cancer therapy
resistance through WNT16B. Nat Med 2012;18:1359-68. DOI PubMed PMC
57. McAndrews KM, Chen Y, Darpolor JK, et al. Identification of functional heterogeneity of carcinoma-associated fibroblasts with
distinct IL6-mediated therapy resistance in pancreatic cancer. Cancer Discov 2022;12:1580-97. DOI PubMed PMC
58. Vigano S, Alatzoglou D, Irving M, et al. Targeting adenosine in cancer immunotherapy to enhance T-cell function. Front Immunol
2019;10:925. DOI PubMed PMC
59. Allard B, Allard D, Buisseret L, Stagg J. The adenosine pathway in immuno-oncology. Nat Rev Clin Oncol 2020;17:611-29. DOI
PubMed
60. Sidders B, Zhang P, Goodwin K, et al. Adenosine signaling is prognostic for cancer outcome and has predictive utility for
immunotherapeutic response. Clin Cancer Res 2020;26:2176-87. DOI
61. Ahmed A, Tait SWG. Targeting immunogenic cell death in cancer. Mol Oncol 2020;14:2994-3006. DOI PubMed PMC
62. Xia GQ, Cai JN, Wu X, Fang Q, Zhao N, Lv XW. The mechanism by which ATP regulates alcoholic steatohepatitis through P2X4
and CD39. Eur J Pharmacol 2022;916:174729. DOI
63. Vijayan D, Young A, Teng MWL, Smyth MJ. Targeting immunosuppressive adenosine in cancer. Nat Rev Cancer 2017;17:765.
DOI PubMed
64. Marin-Acevedo JA, Kimbrough EO, Lou Y. Next generation of immune checkpoint inhibitors and beyond. J Hematol Oncol
2021;14:45. DOI PubMed PMC
65. Sun C, Wang B, Hao S. Adenosine-A2A receptor pathway in cancer immunotherapy. Front Immunol 2022;13:837230. DOI
PubMed PMC
66. Sylvestre M, Crane CA, Pun SH. Progress on modulating tumor-associated macrophages with biomaterials. Adv Mater
2020;32:e1902007. DOI PubMed PMC
67. Gao J, Liang Y, Wang L. Shaping polarization of tumor-associated macrophages in cancer immunotherapy. Front Immunol
2022;13:888713. DOI PubMed PMC
68. Mantovani A, Sica A, Sozzani S, Allavena P, Vecchi A, Locati M. The chemokine system in diverse forms of macrophage activation
and polarization. Trends Immunol 2004;25:677-86. DOI PubMed
69. Nakao S, Kuwano T, Tsutsumi-Miyahara C, et al. Infiltration of COX-2-expressing macrophages is a prerequisite for IL-1 beta-
induced neovascularization and tumor growth. J Clin Invest 2005;115:2979-91. DOI PubMed PMC
70. Fujimoto J, Aoki I, Khatun S, Toyoki H, Tamaya T. Clinical implications of expression of interleukin-8 related to myometrial
invasion with angiogenesis in uterine endometrial cancers. Ann Oncol 2002;13:430-4. DOI PubMed
71. Murphy PS, Wang J, Bhagwat SP, et al. CD73 regulates anti-inflammatory signaling between apoptotic cells and endotoxin-
conditioned tissue macrophages. Cell Death Differ 2017;24:559-70. DOI PubMed PMC
72. Yamaguchi H, Maruyama T, Urade Y, Nagata S. Immunosuppression via adenosine receptor activation by adenosine monophosphate
released from apoptotic cells. Elife 2014;3:e02172. DOI PubMed PMC
73. Köröskényi K, Duró E, Pallai A, et al. Involvement of adenosine A2A receptors in engulfment-dependent apoptotic cell suppression
of inflammation. J Immunol 2011;186:7144-55. DOI PubMed PMC
74. Marciscano AE, Anandasabapathy N. The role of dendritic cells in cancer and anti-tumor immunity. Semin Immunol 2021;52:101481.
DOI PubMed PMC
75. Albert ML, Sauter B, Bhardwaj N. Dendritic cells acquire antigen from apoptotic cells and induce class I-restricted CTLs. Nature
1998;392:86-9. DOI PubMed
76. Nirschl CJ, Suárez-Fariñas M, Izar B, et al. IFNγ-dependent tissue-immune homeostasis is co-opted in the tumor microenvironment.
Cell 2017;170:127-41.e15. DOI PubMed PMC
77. Joffre O, Nolte MA, Spörri R, Reis e Sousa C. Inflammatory signals in dendritic cell activation and the induction of adaptive
immunity. Immunol Rev 2009;227:234-47. DOI PubMed
78. Dunn GP, Bruce AT, Ikeda H, Old LJ, Schreiber RD. Cancer immunoediting: from immunosurveillance to tumor escape. Nat