Page 69 - Read Online
P. 69

Novati et al. Ageing Neur Dis 2022;2:17  https://dx.doi.org/10.20517/and.2022.19  Page 23 of 29

               119.      Vorhees CV, Williams MT. Assessing spatial learning and memory in rodents. ILAR J 2014;55:310-32.  DOI  PubMed  PMC
               120.      Coughlan G, Laczó J, Hort J, Minihane AM, Hornberger M. Spatial navigation deficits - overlooked cognitive marker for preclinical
                    Alzheimer disease? Nat Rev Neurol 2018;14:496-506.  DOI  PubMed
               121.      Burgess N, Maguire EA, O’keefe J. The Human hippocampus and spatial and episodic memory. Neuron 2002;35:625-41.  DOI
                    PubMed
               122.      Morellini F. Spatial memory tasks in rodents: what do they model? Cell Tissue Res 2013;354:273-86.  DOI  PubMed
               123.      Galeano P, Martino Adami PV, Do Carmo S, et al. Longitudinal analysis of the behavioral phenotype in a novel transgenic rat model
                    of early stages of Alzheimer’s disease. Front Behav Neurosci 2014;8:321.  DOI  PubMed  PMC
               124.      Iulita MF, Allard S, Richter L, et al. Intracellular Aβ pathology and early cognitive impairments in a transgenic rat overexpressing
                    human amyloid precursor protein: a multidimensional study. Acta Neuropathol Commun 2014;2:61.  DOI  PubMed  PMC
               125.      Petrasek T, Vojtechova I, Lobellova V, et al. The McGill transgenic rat model of Alzheimer’s disease displays cognitive and motor
                    impairments, changes in anxiety and social behavior, and altered circadian activity. Front Aging Neurosci 2018;10:250.  DOI
                    PubMed  PMC
               126.      Fowler CF, Goerzen D, Devenyi GA, Madularu D, Chakravarty MM, Near J. Neurochemical and cognitive changes precede
                    structural abnormalities in the TgF344-AD rat model. Brain Commun 2022;4:fcac072.  DOI  PubMed  PMC
               127.      Proskauer Pena SL, Mallouppas K, Oliveira AMG, Zitricky F, Nataraj A, Jezek K. Early spatial memory impairment in a double
                    transgenic model of Alzheimer’s disease TgF-344 AD. Brain Sci 2021;11:1300.  DOI
               128.      Tournier BB, Barca C, Fall AB, et al. Spatial reference learning deficits in absence of dysfunctional working memory in the TgF344-
                    AD rat model of Alzheimer’s disease. Genes Brain Behav 2021;20:e12712.  DOI  PubMed
               129.      Saré RM, Cooke SK, Krych L, Zerfas PM, Cohen RM, Smith CB. Behavioral phenotype in the TgF344-AD rat model of Alzheimer’s
                    disease. Front Neurosci 2020;14:601.  DOI  PubMed  PMC
               130.      Rorabaugh JM, Chalermpalanupap T, Botz-Zapp CA, et al. Chemogenetic locus coeruleus activation restores reversal learning in a rat
                    model of Alzheimer’s disease. Brain 2017;140:3023-38.  DOI  PubMed  PMC
               131.      Voorhees JR, Remy MT, Cintrón-Pérez CJ, et al. (-)-P7C3-S243 protects a rat model of Alzheimer’s disease from neuropsychiatric
                    deficits and neurodegeneration without altering amyloid deposition or reactive glia. Biol Psychiatry 2018;84:488-98.  DOI  PubMed
                    PMC
               132.      Berkowitz LE, Harvey RE, Drake E, Thompson SM, Clark BJ. Progressive impairment of directional and spatially precise trajectories
                    by TgF344-Alzheimer’s disease rats in the Morris Water Task. Sci Rep 2018;8:16153.  DOI  PubMed  PMC
               133.      Laczó J, Andel R, Vyhnalek M, et al. Human analogue of the morris water maze for testing subjects at risk of Alzheimer’s disease.
                    Neurodegener Dis 2010;7:148-52.  DOI  PubMed
               134.      Possin KL, Sanchez PE, Anderson-Bergman C, et al. Cross-species translation of the Morris maze for Alzheimer’s disease. J Clin
                    Invest 2016;126:779-83.  DOI  PubMed  PMC
               135.      Laczó J, Markova H, Lobellova V, et al. Scopolamine disrupts place navigation in rats and humans: a translational validation of the
                    Hidden Goal Task in the Morris water maze and a real maze for humans. Psychopharmacology (Berl) 2017;234:535-47.  DOI
                    PubMed
               136.      Tromp D, Dufour A, Lithfous S, Pebayle T, Després O. Episodic memory in normal aging and Alzheimer disease: Insights from
                    imaging and behavioral studies. Ageing Res Rev 2015;24:232-62.  DOI  PubMed
               137.      Goldstein FC, Loring DW, Thomas T, Saleh S, Hajjar I. Recognition memory performance as a cognitive marker of prodromal
                    Alzheimer’s disease. J Alzheimers Dis 2019;72:507-14.  DOI  PubMed
               138.      Quenon L, de Xivry JJ, Hanseeuw B, Ivanoiu A. Investigating associative learning effects in patients with prodromal Alzheimer’s
                    disease using the temporal context model. J Int Neuropsychol Soc 2015;21:699-708.  DOI  PubMed
               139.      Hampstead BM, Stringer AY, Stilla RF, Amaraneni A, Sathian K. Where did I put that? Neuropsychologia 2011;49:2349-61.  DOI
                    PubMed  PMC
               140.      Chaney AM, Lopez-Picon FR, Serrière S, et al. Prodromal neuroinflammatory, cholinergic and metabolite dysfunction detected by
                    PET and MRS in the TgF344-AD transgenic rat model of AD: a collaborative multi-modal study. Theranostics 2021;11:6644-67.
                    DOI  PubMed  PMC
               141.      Goodman AM, Langner BM, Jackson N, Alex C, McMahon LL. Heightened hippocampal β-adrenergic receptor function drives
                    synaptic potentiation and supports learning and memory in the TgF344-AD rat model during prodromal Alzheimer’s disease. J
                    Neurosci 2021;41:5747-61.  DOI  PubMed  PMC
               142.      Habif M, Do Carmo S, Báez MV, et al. Early long-term memory impairment and changes in the expression of synaptic plasticity-
                    associated  genes,  in  the  McGill-R-Thy1-APP  rat  model  of  Alzheimer’s-like  brain  amyloidosis.  Front  Aging  Neurosci
                    2020;12:585873.  DOI  PubMed  PMC
               143.      Morrone CD, Bazzigaluppi P, Beckett TL, et al. Regional differences in Alzheimer’s disease pathology confound behavioural rescue
                    after amyloid-β attenuation. Brain 2020;143:359-73.  DOI  PubMed  PMC
               144.      Wu C, Yang L, Li Y, et al. Effects of exercise training on anxious-depressive-like behavior in Alzheimer rat. Med Sci Sports Exerc
                    2020;52:1456-69.  DOI  PubMed  PMC
               145.      Yang L, Wu C, Li Y, et al. Long-term exercise pre-training attenuates Alzheimer’s disease-related pathology in a transgenic rat
                    model of Alzheimer’s disease. Geroscience 2022;44:1457-77.  DOI  PubMed  PMC
               146.      Wilson EN, Abela AR, Do Carmo S, et al. Intraneuronal amyloid beta accumulation disrupts hippocampal CRTC1-dependent gene
   64   65   66   67   68   69   70   71   72   73   74