Page 69 - Read Online
P. 69
Novati et al. Ageing Neur Dis 2022;2:17 https://dx.doi.org/10.20517/and.2022.19 Page 23 of 29
119. Vorhees CV, Williams MT. Assessing spatial learning and memory in rodents. ILAR J 2014;55:310-32. DOI PubMed PMC
120. Coughlan G, Laczó J, Hort J, Minihane AM, Hornberger M. Spatial navigation deficits - overlooked cognitive marker for preclinical
Alzheimer disease? Nat Rev Neurol 2018;14:496-506. DOI PubMed
121. Burgess N, Maguire EA, O’keefe J. The Human hippocampus and spatial and episodic memory. Neuron 2002;35:625-41. DOI
PubMed
122. Morellini F. Spatial memory tasks in rodents: what do they model? Cell Tissue Res 2013;354:273-86. DOI PubMed
123. Galeano P, Martino Adami PV, Do Carmo S, et al. Longitudinal analysis of the behavioral phenotype in a novel transgenic rat model
of early stages of Alzheimer’s disease. Front Behav Neurosci 2014;8:321. DOI PubMed PMC
124. Iulita MF, Allard S, Richter L, et al. Intracellular Aβ pathology and early cognitive impairments in a transgenic rat overexpressing
human amyloid precursor protein: a multidimensional study. Acta Neuropathol Commun 2014;2:61. DOI PubMed PMC
125. Petrasek T, Vojtechova I, Lobellova V, et al. The McGill transgenic rat model of Alzheimer’s disease displays cognitive and motor
impairments, changes in anxiety and social behavior, and altered circadian activity. Front Aging Neurosci 2018;10:250. DOI
PubMed PMC
126. Fowler CF, Goerzen D, Devenyi GA, Madularu D, Chakravarty MM, Near J. Neurochemical and cognitive changes precede
structural abnormalities in the TgF344-AD rat model. Brain Commun 2022;4:fcac072. DOI PubMed PMC
127. Proskauer Pena SL, Mallouppas K, Oliveira AMG, Zitricky F, Nataraj A, Jezek K. Early spatial memory impairment in a double
transgenic model of Alzheimer’s disease TgF-344 AD. Brain Sci 2021;11:1300. DOI
128. Tournier BB, Barca C, Fall AB, et al. Spatial reference learning deficits in absence of dysfunctional working memory in the TgF344-
AD rat model of Alzheimer’s disease. Genes Brain Behav 2021;20:e12712. DOI PubMed
129. Saré RM, Cooke SK, Krych L, Zerfas PM, Cohen RM, Smith CB. Behavioral phenotype in the TgF344-AD rat model of Alzheimer’s
disease. Front Neurosci 2020;14:601. DOI PubMed PMC
130. Rorabaugh JM, Chalermpalanupap T, Botz-Zapp CA, et al. Chemogenetic locus coeruleus activation restores reversal learning in a rat
model of Alzheimer’s disease. Brain 2017;140:3023-38. DOI PubMed PMC
131. Voorhees JR, Remy MT, Cintrón-Pérez CJ, et al. (-)-P7C3-S243 protects a rat model of Alzheimer’s disease from neuropsychiatric
deficits and neurodegeneration without altering amyloid deposition or reactive glia. Biol Psychiatry 2018;84:488-98. DOI PubMed
PMC
132. Berkowitz LE, Harvey RE, Drake E, Thompson SM, Clark BJ. Progressive impairment of directional and spatially precise trajectories
by TgF344-Alzheimer’s disease rats in the Morris Water Task. Sci Rep 2018;8:16153. DOI PubMed PMC
133. Laczó J, Andel R, Vyhnalek M, et al. Human analogue of the morris water maze for testing subjects at risk of Alzheimer’s disease.
Neurodegener Dis 2010;7:148-52. DOI PubMed
134. Possin KL, Sanchez PE, Anderson-Bergman C, et al. Cross-species translation of the Morris maze for Alzheimer’s disease. J Clin
Invest 2016;126:779-83. DOI PubMed PMC
135. Laczó J, Markova H, Lobellova V, et al. Scopolamine disrupts place navigation in rats and humans: a translational validation of the
Hidden Goal Task in the Morris water maze and a real maze for humans. Psychopharmacology (Berl) 2017;234:535-47. DOI
PubMed
136. Tromp D, Dufour A, Lithfous S, Pebayle T, Després O. Episodic memory in normal aging and Alzheimer disease: Insights from
imaging and behavioral studies. Ageing Res Rev 2015;24:232-62. DOI PubMed
137. Goldstein FC, Loring DW, Thomas T, Saleh S, Hajjar I. Recognition memory performance as a cognitive marker of prodromal
Alzheimer’s disease. J Alzheimers Dis 2019;72:507-14. DOI PubMed
138. Quenon L, de Xivry JJ, Hanseeuw B, Ivanoiu A. Investigating associative learning effects in patients with prodromal Alzheimer’s
disease using the temporal context model. J Int Neuropsychol Soc 2015;21:699-708. DOI PubMed
139. Hampstead BM, Stringer AY, Stilla RF, Amaraneni A, Sathian K. Where did I put that? Neuropsychologia 2011;49:2349-61. DOI
PubMed PMC
140. Chaney AM, Lopez-Picon FR, Serrière S, et al. Prodromal neuroinflammatory, cholinergic and metabolite dysfunction detected by
PET and MRS in the TgF344-AD transgenic rat model of AD: a collaborative multi-modal study. Theranostics 2021;11:6644-67.
DOI PubMed PMC
141. Goodman AM, Langner BM, Jackson N, Alex C, McMahon LL. Heightened hippocampal β-adrenergic receptor function drives
synaptic potentiation and supports learning and memory in the TgF344-AD rat model during prodromal Alzheimer’s disease. J
Neurosci 2021;41:5747-61. DOI PubMed PMC
142. Habif M, Do Carmo S, Báez MV, et al. Early long-term memory impairment and changes in the expression of synaptic plasticity-
associated genes, in the McGill-R-Thy1-APP rat model of Alzheimer’s-like brain amyloidosis. Front Aging Neurosci
2020;12:585873. DOI PubMed PMC
143. Morrone CD, Bazzigaluppi P, Beckett TL, et al. Regional differences in Alzheimer’s disease pathology confound behavioural rescue
after amyloid-β attenuation. Brain 2020;143:359-73. DOI PubMed PMC
144. Wu C, Yang L, Li Y, et al. Effects of exercise training on anxious-depressive-like behavior in Alzheimer rat. Med Sci Sports Exerc
2020;52:1456-69. DOI PubMed PMC
145. Yang L, Wu C, Li Y, et al. Long-term exercise pre-training attenuates Alzheimer’s disease-related pathology in a transgenic rat
model of Alzheimer’s disease. Geroscience 2022;44:1457-77. DOI PubMed PMC
146. Wilson EN, Abela AR, Do Carmo S, et al. Intraneuronal amyloid beta accumulation disrupts hippocampal CRTC1-dependent gene