Page 67 - Read Online
P. 67
Novati et al. Ageing Neur Dis 2022;2:17 https://dx.doi.org/10.20517/and.2022.19 Page 21 of 29
PMC
61. Spillantini MG, Bird TD, Ghetti B. Frontotemporal dementia and Parkinsonism linked to chromosome 17: a new group of
tauopathies. Brain Pathol 1998;8:387-402. DOI PubMed PMC
62. Mirra SS, Murrell JR, Gearing M, et al. Tau pathology in a family with dementia and a P301L mutation in tau. J Neuropathol Exp
Neurol 1999;58:335-45. DOI PubMed
63. Perluigi M, Barone E, Di Domenico F, Butterfield DA. Aberrant protein phosphorylation in Alzheimer disease brain disturbs pro-
survival and cell death pathways. Biochim Biophys Acta 2016;1862:1871-82. DOI PubMed
64. Weingarten MD, Lockwood AH, Hwo SY, Kirschner MW. A protein factor essential for microtubule assembly. Proc Natl Acad Sci U
S A 1975;72:1858-62. DOI PubMed PMC
65. Drechsel DN, Hyman AA, Cobb MH, Kirschner MW. Modulation of the dynamic instability of tubulin assembly by the microtubule-
associated protein tau. Mol Biol Cell 1992;3:1141-54. DOI PubMed PMC
66. Goedert M, Spillantini M, Jakes R, Rutherford D, Crowther R. Multiple isoforms of human microtubule-associated protein tau:
sequences and localization in neurofibrillary tangles of Alzheimer’s disease. Neuron 1989;3:519-26. DOI PubMed
67. Hanes J, Zilka N, Bartkova M, Caletkova M, Dobrota D, Novak M. Rat tau proteome consists of six tau isoforms: implication for
animal models of human tauopathies. J Neurochem 2009;108:1167-76. DOI PubMed
68. Cohen RM, Rezai-Zadeh K, Weitz TM, et al. A transgenic Alzheimer rat with plaques, tau pathology, behavioral impairment,
oligomeric aβ, and frank neuronal loss. J Neurosci 2013;33:6245-56. DOI PubMed PMC
69. Audrain M, Souchet B, Alves S, et al. βAPP processing drives gradual tau pathology in an age-dependent amyloid rat model of
Alzheimer’s disease. Cereb Cortex 2018;28:3976-93. DOI PubMed
70. Pang K, Jiang R, Zhang W, et al. An App knock-in rat model for Alzheimer’s disease exhibiting Aβ and tau pathologies, neuronal
death and cognitive impairments. Cell Res 2022;32:157-75. DOI PubMed PMC
71. Mielke MM, Vemuri P, Rocca WA. Clinical epidemiology of Alzheimer’s disease: assessing sex and gender differences. Clin
Epidemiol 2014;6:37-48. DOI PubMed PMC
72. Poewe W, Seppi K, Tanner CM, et al. Parkinson disease. Nat Rev Dis Primers 2017;3:17013. DOI PubMed
73. Dorszewska J, Kowalska M, Prendecki M, Piekut T, Kozłowska J, Kozubski W. Oxidative stress factors in Parkinson’s disease.
Neural Regen Res 2021;16:1383-91. DOI PubMed PMC
74. Singleton AB, Farrer M, Johnson J, et al. Alpha-synuclein locus triplication causes Parkinson’s disease. Science 2003;302:841. DOI
PubMed
75. Olgiati S, Thomas A, Quadri M, et al. Early-onset parkinsonism caused by α-synuclein gene triplication: clinical and genetic findings
in a novel family. Parkinsonism Relat Disord 2015;21:981-6. DOI PubMed
76. Chartier-harlin M, Kachergus J, Roumier C, et al. α-synuclein locus duplication as a cause of familial Parkinson’s disease. The Lancet
2004;364:1167-9. DOI PubMed
77. Ferese R, Modugno N, Campopiano R, et al. Four copies of SNCA responsible for autosomal dominant Parkinson’s disease in two
Italian siblings. Parkinsons Dis 2015;2015:546462. DOI PubMed PMC
78. Koprich JB, Kalia LV, Brotchie JM. Animal models of α-synucleinopathy for Parkinson disease drug development. Nat Rev Neurosci
2017;18:515-29. DOI PubMed
79. Lin X, Parisiadou L, Sgobio C, et al. Conditional expression of Parkinson’s disease-related mutant α-synuclein in the midbrain
dopaminergic neurons causes progressive neurodegeneration and degradation of transcription factor nuclear receptor related 1. J
Neurosci 2012;32:9248-64. DOI PubMed PMC
80. Janezic S, Threlfell S, Dodson PD, et al. Deficits in dopaminergic transmission precede neuron loss and dysfunction in a new
Parkinson model. Proc Natl Acad Sci U S A 2013;110:E4016-25. DOI PubMed PMC
81. Lin X, Parisiadou L, Gu XL, et al. Leucine-rich repeat kinase 2 regulates the progression of neuropathology induced by Parkinson’s-
disease-related mutant α-synuclein. Neuron 2009;64:807-27. DOI PubMed PMC
82. Hodge D. Endotracheal suctioning and the infant: a nursing care protocol to decrease complications. Neonatal Netw 1991;9:7-15.
PubMed
83. Price DL, Rockenstein E, Ubhi K, et al. Alterations in mGluR5 expression and signaling in Lewy body disease and in transgenic
models of α-synucleinopathy - implications for excitotoxicity. PLoS One 2010;5:e14020. DOI PubMed PMC
84. Nuber S, Harmuth F, Kohl Z, et al. A progressive dopaminergic phenotype associated with neurotoxic conversion of α-synuclein in
BAC-transgenic rats. Brain 2013;136:412-32. DOI PubMed PMC
85. Valente EM, Abou-Sleiman PM, Caputo V, et al. Hereditary early-onset Parkinson’s disease caused by mutations in PINK1. Science
2004;304:1158-60. DOI PubMed
86. Bonifati V, Rizzu P, van Baren MJ, et al. Mutations in the DJ-1 gene associated with autosomal recessive early-onset parkinsonism.
Science 2003;299:256-9. DOI PubMed
87. Lücking CB, Dürr A, Bonifati V, et al; French Parkinson’s Disease Genetics Study Group. , European Consortium on Genetic
Susceptibility in Parkinson’s Disease. Association between early-onset Parkinson’s disease and mutations in the parkin gene. N Engl
J Med 2000;342:1560-7. DOI PubMed
88. Valente EM, Salvi S, Ialongo T, et al. PINK1 mutations are associated with sporadic early-onset parkinsonism. Ann Neurol
2004;56:336-41. DOI PubMed
89. Rohé CF, Montagna P, Breedveld G, Cortelli P, Oostra BA, Bonifati V. Homozygous PINK1 C-terminus mutation causing early-