Page 68 - Read Online
P. 68

Page 22 of 29                   Novati et al. Ageing Neur Dis 2022;2:17  https://dx.doi.org/10.20517/and.2022.19

                    onset parkinsonism. Ann Neurol 2004;56:427-31.  DOI  PubMed
               90.       Kondapalli C, Kazlauskaite A, Zhang N, et al. PINK1 is activated by mitochondrial membrane potential depolarization and stimulates
                    Parkin E3 ligase activity by phosphorylating Serine 65. Open Biol 2012;2:120080.  DOI  PubMed  PMC
               91.       Gautier CA, Kitada T, Shen J. Loss of PINK1 causes mitochondrial functional defects and increased sensitivity to oxidative stress.
                    Proc Natl Acad Sci U S A 2008;105:11364-9.  DOI  PubMed  PMC
               92.       Amo T, Sato S, Saiki S, et al. Mitochondrial membrane potential decrease caused by loss of PINK1 is not due to proton leak, but to
                    respiratory chain defects. Neurobiol Dis 2011;41:111-8.  DOI  PubMed
               93.       Kane LA, Lazarou M, Fogel AI, et al. PINK1 phosphorylates ubiquitin to activate Parkin E3 ubiquitin ligase activity. J Cell Biol
                    2014;205:143-53.  DOI  PubMed  PMC
               94.       Wang XL, Feng ST, Wang ZZ, Yuan YH, Chen NH, Zhang Y. Parkin, an E3 ubiquitin ligase, plays an essential role in mitochondrial
                    quality control in Parkinson’s disease. Cell Mol Neurobiol 2021;41:1395-411.  DOI  PubMed
               95.       Heo JY, Park JH, Kim SJ, et al. DJ-1 null dopaminergic neuronal cells exhibit defects in mitochondrial function and structure:
                    involvement of mitochondrial complex I assembly. PLoS One 2012;7:e32629.  DOI  PubMed  PMC
               96.       Hayashi T, Ishimori C, Takahashi-Niki K, et al. DJ-1 binds to mitochondrial complex I and maintains its activity. Biochem Biophys
                    Res Commun 2009;390:667-72.  DOI  PubMed
               97.       Poulopoulos M, Levy OA, Alcalay RN. The neuropathology of genetic Parkinson’s disease. Mov Disord 2012;27:831-42.  DOI
                    PubMed  PMC
               98.       Villeneuve LM, Purnell PR, Boska MD, Fox HS. Early expression of Parkinson’s disease-related mitochondrial abnormalities in
                    PINK1 knockout rats. Mol Neurobiol 2016;53:171-86.  DOI  PubMed  PMC
               99.       Gispert S, Ricciardi F, Kurz A, et al. Parkinson phenotype in aged PINK1-deficient mice is accompanied by progressive
                    mitochondrial dysfunction in absence of neurodegeneration. PLoS One 2009;4:e5777.  DOI  PubMed  PMC
               100.      Kitada T, Tong Y, Gautier CA, Shen J. Absence of nigral degeneration in aged parkin/DJ-1/PINK1 triple knockout mice. J
                    Neurochem 2009;111:696-702.  DOI  PubMed  PMC
               101.      Dave KD, De Silva S, Sheth NP, et al. Phenotypic characterization of recessive gene knockout rat models of Parkinson’s disease.
                    Neurobiol Dis 2014;70:190-203.  DOI  PubMed
               102.      Almikhlafi MA, Stauch KL, Villeneuve LM, Purnell PR, Lamberty BG, Fox HS. Deletion of DJ-1 in rats affects protein abundance
                    and mitochondrial function at the synapse. Sci Rep 2020;10:13719.  DOI  PubMed  PMC
               103.      Chandran JS, Lin X, Zapata A, et al. Progressive behavioral deficits in DJ-1-deficient mice are associated with normal nigrostriatal
                    function. Neurobiol Dis 2008;29:505-14.  DOI  PubMed  PMC
               104.      Kim RH, Smith PD, Aleyasin H, et al. Hypersensitivity of DJ-1-deficient mice to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyrindine
                    (MPTP) and oxidative stress. Proc Natl Acad Sci U S A 2005;102:5215-20.  DOI  PubMed  PMC
               105.      Chen L, Cagniard B, Mathews T, et al. Age-dependent motor deficits and dopaminergic dysfunction in DJ-1 null mice. J Biol Chem
                    2005;280:21418-26.  DOI  PubMed
               106.      Goldberg MS, Fleming SM, Palacino JJ, et al. Parkin-deficient mice exhibit nigrostriatal deficits but not loss of dopaminergic
                    neurons. J Biol Chem 2003;278:43628-35.  DOI
               107.      Yu-Taeger L, Petrasch-Parwez E, Osmand AP, et al. A novel BACHD transgenic rat exhibits characteristic neuropathological
                    features of Huntington disease. J Neurosci 2012;32:15426-38.  DOI  PubMed  PMC
               108.      von Horsten S, Schmitt I, Nguyen HP, Holzmann C, Schmidt T, et al. Transgenic rat model of Huntington’s disease. Hum Mol Genet
                    2003;12:617-24.  DOI  PubMed
               109.      Teo RT, Hong X, Yu-Taeger L, et al. Structural and molecular myelination deficits occur prior to neuronal loss in the YAC128 and
                    BACHD models of Huntington disease. Hum Mol Genet 2016;25:2621-32.  DOI  PubMed  PMC
               110.      Blockx I, Van Camp N, Verhoye M, et al. Genotype specific age related changes in a transgenic rat model of Huntington’s disease.
                    Neuroimage 2011;58:1006-16.  DOI  PubMed
               111.      Clemens LE, Weber JJ, Wlodkowski TT, et al. Olesoxime suppresses calpain activation and mutant huntingtin fragmentation in the
                    BACHD rat. Brain 2015;138:3632-53.  DOI  PubMed
               112.      Petrasch-Parwez E, Nguyen HP, Löbbecke-Schumacher M, et al. Cellular and subcellular localization of Huntingtin [corrected]
                    aggregates in the brain of a rat transgenic for Huntington disease. J Comp Neurol 2007;501:716-30.  DOI
               113.      Ruiz-Opazo N, Kosik KS, Lopez LV, Bagamasbad P, Ponce LR, Herrera VL. Attenuated hippocampus-dependent learning and
                    memory decline in transgenic TgAPPswe Fischer-344 rats. Mol Med 2004;10:36-44.  DOI  PubMed  PMC
               114.      Wang CE, Tydlacka S, Orr AL, et al. Accumulation of N-terminal mutant huntingtin in mouse and monkey models implicated as a
                    pathogenic mechanism in Huntington’s disease. Hum Mol Genet 2008;17:2738-51.  DOI  PubMed  PMC
               115.      Kuiper EF, de Mattos EP, Jardim LB, Kampinga HH, Bergink S. Chaperones in polyglutamine aggregation: beyond the Q-stretch.
                    Front Neurosci 2017;11:145.  DOI  PubMed  PMC
               116.      Bondi MW, Jak AJ, Delano-Wood L, Jacobson MW, Delis DC, Salmon DP. Neuropsychological contributions to the early
                    identification of Alzheimer’s disease. Neuropsychol Rev 2008;18:73-90.  DOI  PubMed  PMC
               117.      Skelton WP 3rd, Skelton NK. Alzheimer’s disease. Recognizing and treating a frustrating condition. Postgrad Med 1991;90:33-4, 37.
                    DOI  PubMed
               118.      Lithfous S, Dufour A, Després O. Spatial navigation in normal aging and the prodromal stage of Alzheimer’s disease: insights from
                    imaging and behavioral studies. Ageing Res Rev 2013;12:201-13.  DOI  PubMed
   63   64   65   66   67   68   69   70   71   72   73