Page 74 - Read Online
P. 74

Page 28 of 29                   Novati et al. Ageing Neur Dis 2022;2:17  https://dx.doi.org/10.20517/and.2022.19

               265.      Báez-Mendoza R, Schultz W. The role of the striatum in social behavior. Front Neurosci 2013;7:233.  DOI  PubMed  PMC
               266.      Lukas M, Toth I, Reber SO, Slattery DA, Veenema AH, Neumann ID. The neuropeptide oxytocin facilitates pro-social behavior and
                    prevents social avoidance in rats and mice. Neuropsychopharmacology 2011;36:2159-68.  DOI  PubMed  PMC
               267.      Cheong RY, Gabery S, Petersén Å. The role of hypothalamic pathology for non-motor features of Huntington’s disease. J
                    Huntingtons Dis 2019;8:375-91.  DOI  PubMed  PMC
               268.      Hellem MNN, Cheong RY, Tonetto S, et al. Decreased CSF oxytocin relates to measures of social cognitive impairment in
                    Huntington’s disease patients. Parkinsonism Relat Disord 2022;99:23-9.  DOI  PubMed
               269.      Hooijmans CR, Ritskes-Hoitinga M. Progress in using systematic reviews of animal studies to improve translational research. PLoS
                    Med 2013;10:e1001482.  DOI  PubMed  PMC
               270.      Perel P, Roberts I, Sena E, et al. Comparison of treatment effects between animal experiments and clinical trials: systematic review.
                    BMJ 2007;334:197.  DOI  PubMed  PMC
               271.      Pound P, Ebrahim S, Sandercock P, Bracken MB, Roberts I; Reviewing Animal Trials Systematically (RATS) Group. Where is the
                    evidence that animal research benefits humans? BMJ 2004;328:514-7.  DOI  PubMed  PMC
               272.      Bracken MB. Why animal studies are often poor predictors of human reactions to exposure. J R Soc Med 2009;102:120-2.  DOI
                    PubMed  PMC
               273.      Kilkenny C, Browne WJ, Cuthill IC, Emerson M, Altman DG. Improving bioscience research reporting: the ARRIVE guidelines for
                    reporting animal research. J Pharmacol Pharmacother 2010;1:94-9.  DOI  PubMed  PMC
               274.      McGonigle P, Ruggeri B. Animal models of human disease: challenges in enabling translation. Biochem Pharmacol 2014;87:162-71.
                    DOI  PubMed
               275.      Moulin TC, Covill LE, Itskov PM, Williams MJ, Schiöth HB. Rodent and fly models in behavioral neuroscience: an evaluation of
                    methodological advances, comparative research, and future perspectives. Neurosci Biobehav Rev 2021;120:1-12.  DOI  PubMed
               276.      Smolek T, Jadhav S, Brezovakova V, et al. First-in-rat study of human Alzheimer’s disease tau propagation. Mol Neurobiol
                    2019;56:621-31.  DOI  PubMed
               277.      Van Dam D, De Deyn PP. Animal models in the drug discovery pipeline for Alzheimer’s disease. Br J Pharmacol 2011;164:1285-
                    300.  DOI  PubMed  PMC
               278.      Lecanu L, Papadopoulos V. Modeling Alzheimer’s disease with non-transgenic rat models. Alzheimers Res Ther 2013;5:17.  DOI
                    PubMed  PMC
               279.      Zakaria R, Wan Yaacob WM, Othman Z, Long I, Ahmad AH, Al-Rahbi B. Lipopolysaccharide-induced memory impairment in rats:
                    a model of Alzheimer’s disease. Physiol Res 2017;66:553-65.  DOI  PubMed
               280.      Deumens R, Blokland A, Prickaerts J. Modeling Parkinson’s disease in rats: an evaluation of 6-OHDA lesions of the nigrostriatal
                    pathway. Exp Neurol 2002;175:303-17.  DOI  PubMed
               281.      Beal M, Ferrante R, Swartz K, Kowall N. Chronic quinolinic acid lesions in rats closely resemble Huntington’s disease. J Neurosci
                    1991;11:1649-59.  PubMed  PMC
               282.      DiFiglia M. Excitotoxic injury of the neostriatum: a model for Huntington’s disease. Trends in neurosciences 1990;13:286-9.  DOI
                    PubMed
               283.      Schwarcz R, Guidetti P, Sathyasaikumar KV, Muchowski PJ. Of mice, rats and men: Revisiting the quinolinic acid hypothesis of
                    Huntington’s disease. Prog Neurobiol 2010;90:230-45.  DOI  PubMed  PMC
               284.      Borlongan CV, Koutouzis TK, Sanberg PR. 3-Nitropropionic acid animal model and Huntington’s disease. Neurosci Biobehav Rev
                    1997;21:289-93.  DOI  PubMed
               285.      Bali J, Gheinani AH, Zurbriggen S, Rajendran L. Role of genes linked to sporadic Alzheimer’s disease risk in the production of β-
                    amyloid peptides. Proc Natl Acad Sci U S A 2012;109:15307-11.  DOI  PubMed  PMC
               286.      Xuan AG, Luo M, Ji WD, Long DH. Effects of engrafted neural stem cells in Alzheimer’s disease rats. Neurosci Lett 2009;450:167-
                    71.  DOI  PubMed
               287.      Moghadam FH, Alaie H, Karbalaie K, Tanhaei S, Nasr Esfahani MH, Baharvand H. Transplantation of primed or unprimed mouse
                    embryonic stem cell-derived neural precursor cells improves cognitive function in Alzheimerian rats. Differentiation 2009;78:59-68.
                    DOI  PubMed
               288.      Wu S, Sasaki A, Yoshimoto R, et al. Neural stem cells improve learning and memory in rats with Alzheimer’s disease. Pathobiology
                    2008;75:186-94.  DOI  PubMed
               289.      Esmaeilzade B, Artimani T, Amiri I, et al. Dimethyloxalylglycine preconditioning enhances protective effects of bone marrow-
                    derived mesenchymal stem cells in Aβ- induced Alzheimer disease. Physiol Behav 2019;199:265-72.  DOI  PubMed
               290.      Gholamigeravand B, Shahidi S, Afshar S, et al. Synergistic effects of adipose-derived mesenchymal stem cells and selenium
                    nanoparticles on streptozotocin-induced memory impairment in the rat. Life Sci 2021;272:119246.  DOI  PubMed
               291.      Nasiri E, Alizadeh A, Roushandeh AM, Gazor R, Hashemi-Firouzi N, Golipoor Z. Melatonin-pretreated adipose-derived
                    mesenchymal stem cells efficeintly improved learning, memory, and cognition in an animal model of Alzheimer’s disease. Metab
                    Brain Dis 2019;34:1131-43.  DOI  PubMed
               292.      Lu MH, Ji WL, Chen H, et al. Intranasal transplantation of human neural stem cells ameliorates Alzheimer’s disease-like pathology in
                    a mouse model. Front Aging Neurosci 2021;13:650103.  DOI  PubMed  PMC
               293.      Blurton-Jones M, Kitazawa M, Martinez-Coria H, et al. Neural stem cells improve cognition via BDNF in a transgenic model of
                    Alzheimer disease. Proc Natl Acad Sci U S A 2009;106:13594-9.  DOI  PubMed  PMC
   69   70   71   72   73   74   75   76   77   78   79