Page 74 - Read Online
P. 74
Page 28 of 29 Novati et al. Ageing Neur Dis 2022;2:17 https://dx.doi.org/10.20517/and.2022.19
265. Báez-Mendoza R, Schultz W. The role of the striatum in social behavior. Front Neurosci 2013;7:233. DOI PubMed PMC
266. Lukas M, Toth I, Reber SO, Slattery DA, Veenema AH, Neumann ID. The neuropeptide oxytocin facilitates pro-social behavior and
prevents social avoidance in rats and mice. Neuropsychopharmacology 2011;36:2159-68. DOI PubMed PMC
267. Cheong RY, Gabery S, Petersén Å. The role of hypothalamic pathology for non-motor features of Huntington’s disease. J
Huntingtons Dis 2019;8:375-91. DOI PubMed PMC
268. Hellem MNN, Cheong RY, Tonetto S, et al. Decreased CSF oxytocin relates to measures of social cognitive impairment in
Huntington’s disease patients. Parkinsonism Relat Disord 2022;99:23-9. DOI PubMed
269. Hooijmans CR, Ritskes-Hoitinga M. Progress in using systematic reviews of animal studies to improve translational research. PLoS
Med 2013;10:e1001482. DOI PubMed PMC
270. Perel P, Roberts I, Sena E, et al. Comparison of treatment effects between animal experiments and clinical trials: systematic review.
BMJ 2007;334:197. DOI PubMed PMC
271. Pound P, Ebrahim S, Sandercock P, Bracken MB, Roberts I; Reviewing Animal Trials Systematically (RATS) Group. Where is the
evidence that animal research benefits humans? BMJ 2004;328:514-7. DOI PubMed PMC
272. Bracken MB. Why animal studies are often poor predictors of human reactions to exposure. J R Soc Med 2009;102:120-2. DOI
PubMed PMC
273. Kilkenny C, Browne WJ, Cuthill IC, Emerson M, Altman DG. Improving bioscience research reporting: the ARRIVE guidelines for
reporting animal research. J Pharmacol Pharmacother 2010;1:94-9. DOI PubMed PMC
274. McGonigle P, Ruggeri B. Animal models of human disease: challenges in enabling translation. Biochem Pharmacol 2014;87:162-71.
DOI PubMed
275. Moulin TC, Covill LE, Itskov PM, Williams MJ, Schiöth HB. Rodent and fly models in behavioral neuroscience: an evaluation of
methodological advances, comparative research, and future perspectives. Neurosci Biobehav Rev 2021;120:1-12. DOI PubMed
276. Smolek T, Jadhav S, Brezovakova V, et al. First-in-rat study of human Alzheimer’s disease tau propagation. Mol Neurobiol
2019;56:621-31. DOI PubMed
277. Van Dam D, De Deyn PP. Animal models in the drug discovery pipeline for Alzheimer’s disease. Br J Pharmacol 2011;164:1285-
300. DOI PubMed PMC
278. Lecanu L, Papadopoulos V. Modeling Alzheimer’s disease with non-transgenic rat models. Alzheimers Res Ther 2013;5:17. DOI
PubMed PMC
279. Zakaria R, Wan Yaacob WM, Othman Z, Long I, Ahmad AH, Al-Rahbi B. Lipopolysaccharide-induced memory impairment in rats:
a model of Alzheimer’s disease. Physiol Res 2017;66:553-65. DOI PubMed
280. Deumens R, Blokland A, Prickaerts J. Modeling Parkinson’s disease in rats: an evaluation of 6-OHDA lesions of the nigrostriatal
pathway. Exp Neurol 2002;175:303-17. DOI PubMed
281. Beal M, Ferrante R, Swartz K, Kowall N. Chronic quinolinic acid lesions in rats closely resemble Huntington’s disease. J Neurosci
1991;11:1649-59. PubMed PMC
282. DiFiglia M. Excitotoxic injury of the neostriatum: a model for Huntington’s disease. Trends in neurosciences 1990;13:286-9. DOI
PubMed
283. Schwarcz R, Guidetti P, Sathyasaikumar KV, Muchowski PJ. Of mice, rats and men: Revisiting the quinolinic acid hypothesis of
Huntington’s disease. Prog Neurobiol 2010;90:230-45. DOI PubMed PMC
284. Borlongan CV, Koutouzis TK, Sanberg PR. 3-Nitropropionic acid animal model and Huntington’s disease. Neurosci Biobehav Rev
1997;21:289-93. DOI PubMed
285. Bali J, Gheinani AH, Zurbriggen S, Rajendran L. Role of genes linked to sporadic Alzheimer’s disease risk in the production of β-
amyloid peptides. Proc Natl Acad Sci U S A 2012;109:15307-11. DOI PubMed PMC
286. Xuan AG, Luo M, Ji WD, Long DH. Effects of engrafted neural stem cells in Alzheimer’s disease rats. Neurosci Lett 2009;450:167-
71. DOI PubMed
287. Moghadam FH, Alaie H, Karbalaie K, Tanhaei S, Nasr Esfahani MH, Baharvand H. Transplantation of primed or unprimed mouse
embryonic stem cell-derived neural precursor cells improves cognitive function in Alzheimerian rats. Differentiation 2009;78:59-68.
DOI PubMed
288. Wu S, Sasaki A, Yoshimoto R, et al. Neural stem cells improve learning and memory in rats with Alzheimer’s disease. Pathobiology
2008;75:186-94. DOI PubMed
289. Esmaeilzade B, Artimani T, Amiri I, et al. Dimethyloxalylglycine preconditioning enhances protective effects of bone marrow-
derived mesenchymal stem cells in Aβ- induced Alzheimer disease. Physiol Behav 2019;199:265-72. DOI PubMed
290. Gholamigeravand B, Shahidi S, Afshar S, et al. Synergistic effects of adipose-derived mesenchymal stem cells and selenium
nanoparticles on streptozotocin-induced memory impairment in the rat. Life Sci 2021;272:119246. DOI PubMed
291. Nasiri E, Alizadeh A, Roushandeh AM, Gazor R, Hashemi-Firouzi N, Golipoor Z. Melatonin-pretreated adipose-derived
mesenchymal stem cells efficeintly improved learning, memory, and cognition in an animal model of Alzheimer’s disease. Metab
Brain Dis 2019;34:1131-43. DOI PubMed
292. Lu MH, Ji WL, Chen H, et al. Intranasal transplantation of human neural stem cells ameliorates Alzheimer’s disease-like pathology in
a mouse model. Front Aging Neurosci 2021;13:650103. DOI PubMed PMC
293. Blurton-Jones M, Kitazawa M, Martinez-Coria H, et al. Neural stem cells improve cognition via BDNF in a transgenic model of
Alzheimer disease. Proc Natl Acad Sci U S A 2009;106:13594-9. DOI PubMed PMC