Page 75 - Read Online
P. 75
Novati et al. Ageing Neur Dis 2022;2:17 https://dx.doi.org/10.20517/and.2022.19 Page 29 of 29
294. Wang Z, Peng W, Zhang C, et al. Effects of stem cell transplantation on cognitive decline in animal models of Alzheimer’s disease: A
systematic review and meta-analysis. Sci Rep 2015;5:12134. DOI PubMed PMC
295. Xie J, Van Hoecke L, Vandenbroucke RE. The impact of systemic inflammation on Alzheimer’s disease pathology. Front Immunol
2021;12:796867. DOI PubMed PMC
296. Wang Q, Liu Y, Zhou J. Neuroinflammation in Parkinson’s disease and its potential as therapeutic target. Transl Neurodegener
2015;4:19. DOI PubMed PMC
297. Hauss-wegrzyniak B, Dobrzanski P, Stoehr JD, Wenk GL. Chronic neuroinflammation in rats reproduces components of the
neurobiology of Alzheimer’s disease. Brain Research 1998;780:294-303. DOI PubMed
298. Wang LM, Wu Q, Kirk RA, Horn KP, Ebada Salem AH, et al. Lipopolysaccharide endotoxemia induces amyloid-β and p-tau
formation in the rat brain. Am J Nucl Med Mol Imaging 2018;8:86-99. PubMed PMC
299. Kang MS, Shin M, Ottoy J, et al. Preclinical in vivo longitudinal assessment of KG207-M as a disease-modifying Alzheimer’s
disease therapeutic. J Cereb Blood Flow Metab 2022;42:788-801. DOI PubMed PMC
300. Blandini F, Armentero MT, Martignoni E. The 6-hydroxydopamine model: news from the past. Parkinsonism Relat Disord 2008;14
Suppl 2:S124-9. DOI PubMed
301. Simola N, Morelli M, Carta AR. The 6-hydroxydopamine model of Parkinson’s disease. Neurotox Res 2007;11:151-67. DOI
PubMed
302. Mendes-Pinheiro B, Soares-Cunha C, Marote A, et al. Unilateral intrastriatal 6-hydroxydopamine lesion in mice: a closer look into
non-motor phenotype and glial response. Int J Mol Sci 2021;22:11530. DOI PubMed PMC
303. Thiele SL, Warre R, Nash JE. Development of a unilaterally-lesioned 6-OHDA mouse model of Parkinson’s disease. J Vis Exp
;2012:3234. DOI PubMed PMC
304. Masini D, Plewnia C, Bertho M, Scalbert N, Caggiano V, Fisone G. A guide to the generation of a 6-hydroxydopamine mouse model
of Parkinson’s disease for the study of non-motor symptoms. Biomedicines 2021;9:598. DOI PubMed PMC
305. Meredith GE, Rademacher DJ. MPTP mouse models of Parkinson’s disease: an update. J Parkinsons Dis 2011;1:19-33. DOI
PubMed PMC
306. Yazdani U, German DC, Liang CL, Manzino L, Sonsalla PK, Zeevalk GD. Rat model of Parkinson’s disease: chronic central delivery
of 1-methyl-4-phenylpyridinium (MPP+). Exp Neurol 2006;200:172-83. DOI PubMed
307. Rossignol J, Fink K, Davis K, et al. Transplants of adult mesenchymal and neural stem cells provide neuroprotection and behavioral
sparing in a transgenic rat model of Huntington’s disease. Stem Cells 2014;32:500-9. DOI PubMed
308. Guillemin GJ. Quinolinic acid, the inescapable neurotoxin. FEBS J 2012;279:1356-65. DOI PubMed
309. Beal MF, Kowall NW, Ellison DW, Mazurek MF, Swartz KJ, Martin JB. Replication of the neurochemical characteristics of
Huntington’s disease by quinolinic acid. Nature 1986;321:168-71. DOI PubMed
310. Shear DA, Dong J, Gundy CD, Haik-creguer KL, Dunbar GL. Comparison of intrastriatal injections of quinolinic acid and 3-
nitropropionic acid for use in animal models of Huntington’s disease. Prog Neuropsychopharmacol Biol Psychiatry 1998;22:1217-40.
DOI PubMed
311. McBride JL, Behrstock SP, Chen EY, et al. Human neural stem cell transplants improve motor function in a rat model of
Huntington’s disease. J Comp Neurol 2004;475:211-9. DOI PubMed
312. Tartaglione AM, Armida M, Potenza RL, Pezzola A, Popoli P, Calamandrei G. Aberrant self-grooming as early marker of motor
dysfunction in a rat model of Huntington’s disease. Behav Brain Res 2016;313:53-7. DOI PubMed
313. Túnez I, Tasset I, Pérez-De La Cruz V, Santamaría A. 3-Nitropropionic acid as a tool to study the mechanisms involved in
Huntington’s disease: past, present and future. Molecules 2010;15:878-916. DOI PubMed PMC
314. Marxreiter F, Stemick J, Kohl Z. Huntingtin lowering strategies. Int J Mol Sci 2020;21:2146. DOI PubMed PMC
315. Miniarikova J, Zimmer V, Martier R, et al. AAV5-miHTT gene therapy demonstrates suppression of mutant huntingtin aggregation
and neuronal dysfunction in a rat model of Huntington’s disease. Gene Ther 2017;24:630-9. DOI PubMed PMC
316. Spronck EA, Brouwers CC, Vallès A, et al. AAV5-miHTT gene therapy demonstrates sustained huntingtin lowering and functional
improvement in Huntington disease mouse models. Mol Ther Methods Clin Dev 2019;13:334-43. DOI PubMed PMC
317. Vallès A, Evers MM, Stam A, et al. Widespread and sustained target engagement in Huntington’s disease minipigs upon intrastriatal
microRNA-based gene therapy. Sci Transl Med 2021;13:eabb8920. DOI PubMed
318. de Almeida LP, Ross CA, Zala D, Aebischer P, Déglon N. Lentiviral-mediated delivery of mutant huntingtin in the striatum of rats
induces a selective neuropathology modulated by polyglutamine repeat size, huntingtin expression levels, and protein length. J
Neurosci 2002;22:3473-83. DOI PubMed PMC
319. Franich NR, Fitzsimons HL, Fong DM, Klugmann M, During MJ, Young D. AAV vector-mediated RNAi of mutant huntingtin
expression is neuroprotective in a novel genetic rat model of Huntington’s disease. Mol Ther 2008;16:947-56. DOI PubMed PMC