Page 75 - Read Online
P. 75

Novati et al. Ageing Neur Dis 2022;2:17  https://dx.doi.org/10.20517/and.2022.19  Page 29 of 29

               294.      Wang Z, Peng W, Zhang C, et al. Effects of stem cell transplantation on cognitive decline in animal models of Alzheimer’s disease: A
                    systematic review and meta-analysis. Sci Rep 2015;5:12134.  DOI  PubMed  PMC
               295.      Xie J, Van Hoecke L, Vandenbroucke RE. The impact of systemic inflammation on Alzheimer’s disease pathology. Front Immunol
                    2021;12:796867.  DOI  PubMed  PMC
               296.      Wang Q, Liu Y, Zhou J. Neuroinflammation in Parkinson’s disease and its potential as therapeutic target. Transl Neurodegener
                    2015;4:19.  DOI  PubMed  PMC
               297.      Hauss-wegrzyniak B, Dobrzanski P, Stoehr JD, Wenk GL. Chronic neuroinflammation in rats reproduces components of the
                    neurobiology of Alzheimer’s disease. Brain Research 1998;780:294-303.  DOI  PubMed
               298.      Wang LM, Wu Q, Kirk RA, Horn KP, Ebada Salem AH, et al. Lipopolysaccharide endotoxemia induces amyloid-β and p-tau
                    formation in the rat brain. Am J Nucl Med Mol Imaging 2018;8:86-99.  PubMed  PMC
               299.      Kang MS, Shin M, Ottoy J, et al. Preclinical in vivo longitudinal assessment of KG207-M as a disease-modifying Alzheimer’s
                    disease therapeutic. J Cereb Blood Flow Metab 2022;42:788-801.  DOI  PubMed  PMC
               300.      Blandini F, Armentero MT, Martignoni E. The 6-hydroxydopamine model: news from the past. Parkinsonism Relat Disord 2008;14
                    Suppl 2:S124-9.  DOI  PubMed
               301.      Simola N, Morelli M, Carta AR. The 6-hydroxydopamine model of Parkinson’s disease. Neurotox Res 2007;11:151-67.  DOI
                    PubMed
               302.      Mendes-Pinheiro B, Soares-Cunha C, Marote A, et al. Unilateral intrastriatal 6-hydroxydopamine lesion in mice: a closer look into
                    non-motor phenotype and glial response. Int J Mol Sci 2021;22:11530.  DOI  PubMed  PMC
               303.      Thiele SL, Warre R, Nash JE. Development of a unilaterally-lesioned 6-OHDA mouse model of Parkinson’s disease. J Vis Exp
                    ;2012:3234.  DOI  PubMed  PMC
               304.      Masini D, Plewnia C, Bertho M, Scalbert N, Caggiano V, Fisone G. A guide to the generation of a 6-hydroxydopamine mouse model
                    of Parkinson’s disease for the study of non-motor symptoms. Biomedicines 2021;9:598.  DOI  PubMed  PMC
               305.      Meredith GE, Rademacher DJ. MPTP mouse models of Parkinson’s disease: an update. J Parkinsons Dis 2011;1:19-33.  DOI
                    PubMed  PMC
               306.      Yazdani U, German DC, Liang CL, Manzino L, Sonsalla PK, Zeevalk GD. Rat model of Parkinson’s disease: chronic central delivery
                    of 1-methyl-4-phenylpyridinium (MPP+). Exp Neurol 2006;200:172-83.  DOI  PubMed
               307.      Rossignol J, Fink K, Davis K, et al. Transplants of adult mesenchymal and neural stem cells provide neuroprotection and behavioral
                    sparing in a transgenic rat model of Huntington’s disease. Stem Cells 2014;32:500-9.  DOI  PubMed
               308.      Guillemin GJ. Quinolinic acid, the inescapable neurotoxin. FEBS J 2012;279:1356-65.  DOI  PubMed
               309.      Beal MF, Kowall NW, Ellison DW, Mazurek MF, Swartz KJ, Martin JB. Replication of the neurochemical characteristics of
                    Huntington’s disease by quinolinic acid. Nature 1986;321:168-71.  DOI  PubMed
               310.      Shear DA, Dong J, Gundy CD, Haik-creguer KL, Dunbar GL. Comparison of intrastriatal injections of quinolinic acid and 3-
                    nitropropionic acid for use in animal models of Huntington’s disease. Prog Neuropsychopharmacol Biol Psychiatry 1998;22:1217-40.
                    DOI  PubMed
               311.      McBride JL, Behrstock SP, Chen EY, et al. Human neural stem cell transplants improve motor function in a rat model of
                    Huntington’s disease. J Comp Neurol 2004;475:211-9.  DOI  PubMed
               312.      Tartaglione AM, Armida M, Potenza RL, Pezzola A, Popoli P, Calamandrei G. Aberrant self-grooming as early marker of motor
                    dysfunction in a rat model of Huntington’s disease. Behav Brain Res 2016;313:53-7.  DOI  PubMed
               313.      Túnez I, Tasset I, Pérez-De La Cruz V, Santamaría A. 3-Nitropropionic acid as a tool to study the mechanisms involved in
                    Huntington’s disease: past, present and future. Molecules 2010;15:878-916.  DOI  PubMed  PMC
               314.      Marxreiter F, Stemick J, Kohl Z. Huntingtin lowering strategies. Int J Mol Sci 2020;21:2146.  DOI  PubMed  PMC
               315.      Miniarikova J, Zimmer V, Martier R, et al. AAV5-miHTT gene therapy demonstrates suppression of mutant huntingtin aggregation
                    and neuronal dysfunction in a rat model of Huntington’s disease. Gene Ther 2017;24:630-9.  DOI  PubMed  PMC
               316.      Spronck EA, Brouwers CC, Vallès A, et al. AAV5-miHTT gene therapy demonstrates sustained huntingtin lowering and functional
                    improvement in Huntington disease mouse models. Mol Ther Methods Clin Dev 2019;13:334-43.  DOI  PubMed  PMC
               317.      Vallès A, Evers MM, Stam A, et al. Widespread and sustained target engagement in Huntington’s disease minipigs upon intrastriatal
                    microRNA-based gene therapy. Sci Transl Med 2021;13:eabb8920.  DOI  PubMed
               318.      de Almeida LP, Ross CA, Zala D, Aebischer P, Déglon N. Lentiviral-mediated delivery of mutant huntingtin in the striatum of rats
                    induces a selective neuropathology modulated by polyglutamine repeat size, huntingtin expression levels, and protein length. J
                    Neurosci 2002;22:3473-83.  DOI  PubMed  PMC
               319.      Franich NR, Fitzsimons HL, Fong DM, Klugmann M, During MJ, Young D. AAV vector-mediated RNAi of mutant huntingtin
                    expression is neuroprotective in a novel genetic rat model of Huntington’s disease. Mol Ther 2008;16:947-56.  DOI  PubMed  PMC
   70   71   72   73   74   75   76   77   78   79   80