Page 22 - Read Online
P. 22
Li et al. Ageing Neur Dis 2022;2:12 https://dx.doi.org/10.20517/and.2022.14 Page 13 of 13
113. Chen-Plotkin AS, Lee VM, Trojanowski JQ. TAR DNA-binding protein 43 in neurodegenerative disease. Nat Rev Neurol
2010;6:211-20. DOI PubMed PMC
114. Mitchell JC, Constable R, So E, et al. Wild type human TDP-43 potentiates ALS-linked mutant TDP-43 driven progressive motor and
cortical neuron degeneration with pathological features of ALS. Acta Neuropathol Commun 2015;3:36. DOI PubMed PMC
115. Wang G, Yang H, Yan S, et al. Cytoplasmic mislocalization of RNA splicing factors and aberrant neuronal gene splicing in TDP-43
transgenic pig brain. Mol Neurodegener 2015;10:42. DOI PubMed PMC
116. Huang C, Tong J, Bi F, Zhou H, Xia XG. Mutant TDP-43 in motor neurons promotes the onset and progression of ALS in rats. J Clin
Invest 2012;122:107-18. DOI PubMed PMC
117. Shan X, Chiang PM, Price DL, Wong PC. Altered distributions of Gemini of coiled bodies and mitochondria in motor neurons of
TDP-43 transgenic mice. Proc Natl Acad Sci U S A 2010;107:16325-30. DOI PubMed PMC
118. Wils H, Kleinberger G, Janssens J, et al. TDP-43 transgenic mice develop spastic paralysis and neuronal inclusions characteristic of
ALS and frontotemporal lobar degeneration. Proc Natl Acad Sci U S A 2010;107:3858-63. DOI PubMed PMC
119. Yin P, Guo X, Yang W, et al. Caspase-4 mediates cytoplasmic accumulation of TDP-43 in the primate brains. Acta Neuropathol
2019;137:919-37. DOI PubMed PMC
120. Uchida A, Sasaguri H, Kimura N, et al. Non-human primate model of amyotrophic lateral sclerosis with cytoplasmic mislocalization
of TDP-43. Brain 2012;135:833-46. DOI PubMed PMC
121. Yang H, Yang S, Jing L, et al. Truncation of mutant huntingtin in knock-in mice demonstrates exon1 huntingtin is a key pathogenic
form. Nat Commun 2020;11:2582. DOI PubMed PMC
122. Bates GP, Dorsey R, Gusella JF, et al. Huntington disease. Nat Rev Dis Primers 2015;1:15005. DOI PubMed
123. Farshim PP, Bates GP. Mouse models of Huntington’s disease. Methods Mol Biol 2018;1780:97-120. DOI PubMed
124. Lee H, Heiman M. Back-to-BACs in Huntington’s disease modeling. Neuron 2022;110:1087-9. DOI PubMed
125. Yang SH, Cheng PH, Banta H, et al. Towards a transgenic model of Huntington’s disease in a non-human primate. Nature
2008;453:921-4. DOI PubMed PMC
126. Yang SH, Cheng PH, Sullivan RT, Thomas JW, Chan AW. Lentiviral integration preferences in transgenic mice. Genesis
2008;46:711-8. DOI PubMed PMC
127. Putkhao K, Kocerha J, Cho IK, Yang J, Parnpai R, Chan AW. Pathogenic cellular phenotypes are germline transmissible in a
transgenic primate model of Huntington’s disease. Stem Cells Dev 2013;22:1198-205. DOI PubMed PMC
128. Moran S, Chi T, Prucha MS, et al. Germline transmission in transgenic Huntington’s disease monkeys. Theriogenology 2015;84:277-
85. DOI PubMed PMC
129. Khampang S, Parnpai R, Mahikul W, Easley CA 4th, Cho IK, Chan AWS. CAG repeat instability in embryonic stem cells and
derivative spermatogenic cells of transgenic Huntington’s disease monkey. J Assist Reprod Genet 2021;38:1215-29. DOI PubMed
PMC
130. Kocerha J, Liu Y, Willoughby D, et al. Longitudinal transcriptomic dysregulation in the peripheral blood of transgenic Huntington’s
disease monkeys. BMC Neurosci 2013;14:88. DOI PubMed PMC
131. Chan AW, Xu Y, Jiang J, et al. A two years longitudinal study of a transgenic Huntington disease monkey. BMC Neurosci
2014;15:36. DOI PubMed PMC
132. Yang D, Wang CE, Zhao B, et al. Expression of Huntington’s disease protein results in apoptotic neurons in the brains of cloned
transgenic pigs. Hum Mol Genet 2010;19:3983-94. DOI PubMed PMC
133. Baxa M, Hruska-Plochan M, Juhas S, et al. A transgenic minipig model of Huntington’s Disease. J Huntingtons Dis 2013;2:47-68.
DOI PubMed
134. Schuldenzucker V, Schubert R, Muratori LM, et al. Behavioral testing of minipigs transgenic for the Huntington gene-A three-year
observational study. PLoS One 2017;12:e0185970. DOI PubMed PMC
135. Yan S, Tu Z, Liu Z, et al. A Huntingtin knockin pig model recapitulates features of selective neurodegeneration in Huntington’s
disease. Cell 2018;173:989-1002.e13. DOI PubMed PMC
136. Meng L, Ely JJ, Stouffer RL, Wolf DP. Rhesus monkeys produced by nuclear transfer. Biol Reprod 1997;57:454-9. DOI PubMed
137. Liu Z, Cai Y, Wang Y, et al. Cloning of macaque monkeys by somatic cell nuclear transfer. Cell 2018;172:881-887.e7. DOI
PubMed
138. Liu Z, Cai Y, Liao Z, et al. Cloning of a gene-edited macaque monkey by somatic cell nuclear transfer. Natl Sci Rev 2019;6:101-8.
DOI PubMed PMC
139. Yeh WH, Shubina-Oleinik O, Levy JM, et al. In vivo base editing restores sensory transduction and transiently improves auditory
function in a mouse model of recessive deafness. Sci Transl Med 2020;12:eaay9101. DOI PubMed PMC
140. Yang L, Yang B, Chen J. One prime for all editing. Cell 2019;179:1448-50. DOI PubMed
141. Mazid MA, Ward C, Luo Z, et al. Rolling back human pluripotent stem cells to an eight-cell embryo-like stage. Nature
2022;605:315-24. DOI PubMed
142. Yin P, Tu Z, Yin A, et al. Aged monkey brains reveal the role of ubiquitin-conjugating enzyme UBE2N in the synaptosomal
accumulation of mutant huntingtin. Hum Mol Genet 2015;24:1350-62. DOI PubMed PMC