Page 21 - Read Online
P. 21

Page 12 of 13                       Li et al. Ageing Neur Dis 2022;2:12  https://dx.doi.org/10.20517/and.2022.14

                    primates. iScience 2021;24:103207.  DOI  PubMed  PMC
               83.       Veitch DP, Weiner MW, Aisen PS, et al; Alzheimer’s Disease Neuroimaging Initiative. Understanding disease progression and
                    improving Alzheimer’s disease clinical trials: recent highlights from the Alzheimer’s Disease Neuroimaging Initiative. Alzheimers
                    Dement 2019;15:106-52.  DOI  PubMed
               84.       Iaccarino L, Tammewar G, Ayakta N, et al. Local and distant relationships between amyloid, tau and neurodegeneration in
                    Alzheimer’s Disease. Neuroimage Clin 2018;17:452-64.  DOI  PubMed  PMC
               85.       Beckman D, Chakrabarty P, Ott S, et al. A novel tau-based rhesus monkey model of Alzheimer’s pathogenesis. Alzheimers Dement
                    2021;17:933-45.  DOI  PubMed  PMC
               86.       Bloem BR, Okun MS, Klein C. Parkinson’s disease. Lancet 2021;397:2284-303.  DOI  PubMed
               87.       Armstrong MJ, Okun MS. Diagnosis and treatment of Parkinson disease: a review. JAMA 2020;323:548-60.  DOI  PubMed
               88.       Kordower JH, Olanow CW, Dodiya HB, et al. Disease duration and the integrity of the nigrostriatal system in Parkinson’s disease.
                    Brain 2013;136:2419-31.  DOI  PubMed  PMC
               89.       Deng H, Wang P, Jankovic J. The genetics of Parkinson disease. Ageing Res Rev 2018;42:72-85.  DOI  PubMed
               90.       Lee Y, Dawson VL, Dawson TM. Animal models of Parkinson’s disease: vertebrate genetics. Cold Spring Harb Perspect Med
                    2012;2:a009324-a009324.  DOI  PubMed  PMC
               91.       Teil M, Arotcarena ML, Dehay B. A new rise of non-human primate models of synucleinopathies. Biomedicines 2021;9:272.  DOI
                    PubMed  PMC
               92.       Li H, Su LY, Yang L, et al. A cynomolgus monkey with naturally occurring Parkinson’s disease. Natl Sci Rev 2021;8:nwaa292.  DOI
                    PubMed  PMC
               93.       Porras G, Li Q, Bezard E. Modeling Parkinson’s disease in primates: the MPTP model. Cold Spring Harb Perspect Med
                    2012;2:a009308.  DOI  PubMed  PMC
               94.       Tieu K. A guide to neurotoxic animal models of Parkinson’s disease. Cold Spring Harb Perspect Med 2011;1:a009316.  DOI
                    PubMed  PMC
               95.       Lei X, Li H, Huang B, et al. 1-Methyl-4-phenylpyridinium stereotactic infusion completely and specifically ablated the nigrostriatal
                    dopaminergic pathway in rhesus macaque. PLoS One 2015;10:e0127953.  DOI  PubMed  PMC
               96.       Huang B, Wu S, Wang Z, et al. Phosphorylated α-synuclein accumulations and lewy body-like pathology distributed in Parkinson’s
                    disease-related brain areas of aged rhesus monkeys treated with MPTP. Neuroscience 2018;379:302-15.  DOI  PubMed
               97.       Koprich JB, Johnston TH, Reyes G, Omana V, Brotchie JM. Towards a non-human primate model of alpha-synucleinopathy for
                    development of therapeutics for Parkinson’s disease: optimization of AAV1/2 delivery parameters to drive sustained expression of
                    alpha synuclein and dopaminergic degeneration in macaque. PLoS One 2016;11:e0167235.  DOI  PubMed  PMC
               98.       Niu Y, Guo X, Chen Y, et al. Early Parkinson’s disease symptoms in α-synuclein transgenic monkeys. Hum Mol Genet
                    2015;24:2308-17.  DOI  PubMed  PMC
               99.       Yang W, Wang G, Wang CE, et al. Mutant alpha-synuclein causes age-dependent neuropathology in monkey brain. J Neurosci
                    2015;35:8345-58.  DOI  PubMed  PMC
               100.      Blesa J, Przedborski S. Parkinson’s disease: animal models and dopaminergic cell vulnerability. Front Neuroanat 2014;8:155.  DOI
                    PubMed  PMC
               101.      Yang W, Liu Y, Tu Z, et al. CRISPR/Cas9-mediated PINK1 deletion leads to neurodegeneration in rhesus monkeys. Cell Res
                    2019;29:334-6.  DOI  PubMed  PMC
               102.      Chen ZZ, Wang JY, Kang Y, et al. PINK1 gene mutation by pair truncated sgRNA/Cas9-D10A in cynomolgus monkeys. Zool Res
                    2021;42:469-77.  DOI  PubMed  PMC
               103.      Yang W, Guo X, Tu Z, et al. PINK1 kinase dysfunction triggers neurodegeneration in the primate brain without impacting
                    mitochondrial homeostasis. Protein Cell 2022;13:26-46.  DOI  PubMed  PMC
               104.      Yang W, Li S, Li XJ. A CRISPR monkey model unravels a unique function of PINK1 in primate brains. Mol Neurodegener
                    2019;14:17.  DOI  PubMed  PMC
               105.      Li H, Wu S, Ma X, et al. Co-editing PINK1 and DJ-1 genes via adeno-associated virus-delivered CRISPR/Cas9 system in adult
                    monkey brain elicits classical parkinsonian phenotype. Neurosci Bull 2021;37:1271-88.  DOI  PubMed  PMC
               106.      Grad LI, Rouleau GA, Ravits J, Cashman NR. Clinical spectrum of amyotrophic lateral sclerosis (ALS). Cold Spring Harb Perspect
                    Med 2017;7:a024117.  DOI  PubMed  PMC
               107.      Talbott EO, Malek AM, Lacomis D. The epidemiology of amyotrophic lateral sclerosis. Handb Clin Neurol 2016;138:225-38.  DOI
                    PubMed
               108.      Forman MS, Trojanowski JQ, Lee VM. TDP-43: a novel neurodegenerative proteinopathy. Curr Opin Neurobiol 2007;17:548-55.
                    DOI  PubMed  PMC
               109.      Saberi S, Stauffer JE, Schulte DJ, Ravits J. Neuropathology of amyotrophic lateral sclerosis and its variants. Neurol Clin
                    2015;33:855-76.  DOI  PubMed  PMC
               110.      Lagier-Tourenne C, Cleveland DW. Rethinking ALS: the FUS about TDP-43. Cell 2009;136:1001-4.  DOI  PubMed  PMC
               111.      Cruz S, Cleveland DW. Understanding the role of TDP-43 and FUS/TLS in ALS and beyond. Curr Opin Neurobiol 2011;21:904-19.
                    DOI  PubMed  PMC
               112.      Neumann M, Sampathu DM, Kwong LK, et al. Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral
                    sclerosis. Science 2006;314:130-3.  DOI  PubMed
   16   17   18   19   20   21   22   23   24   25   26