Page 21 - Read Online
P. 21
Page 12 of 13 Li et al. Ageing Neur Dis 2022;2:12 https://dx.doi.org/10.20517/and.2022.14
primates. iScience 2021;24:103207. DOI PubMed PMC
83. Veitch DP, Weiner MW, Aisen PS, et al; Alzheimer’s Disease Neuroimaging Initiative. Understanding disease progression and
improving Alzheimer’s disease clinical trials: recent highlights from the Alzheimer’s Disease Neuroimaging Initiative. Alzheimers
Dement 2019;15:106-52. DOI PubMed
84. Iaccarino L, Tammewar G, Ayakta N, et al. Local and distant relationships between amyloid, tau and neurodegeneration in
Alzheimer’s Disease. Neuroimage Clin 2018;17:452-64. DOI PubMed PMC
85. Beckman D, Chakrabarty P, Ott S, et al. A novel tau-based rhesus monkey model of Alzheimer’s pathogenesis. Alzheimers Dement
2021;17:933-45. DOI PubMed PMC
86. Bloem BR, Okun MS, Klein C. Parkinson’s disease. Lancet 2021;397:2284-303. DOI PubMed
87. Armstrong MJ, Okun MS. Diagnosis and treatment of Parkinson disease: a review. JAMA 2020;323:548-60. DOI PubMed
88. Kordower JH, Olanow CW, Dodiya HB, et al. Disease duration and the integrity of the nigrostriatal system in Parkinson’s disease.
Brain 2013;136:2419-31. DOI PubMed PMC
89. Deng H, Wang P, Jankovic J. The genetics of Parkinson disease. Ageing Res Rev 2018;42:72-85. DOI PubMed
90. Lee Y, Dawson VL, Dawson TM. Animal models of Parkinson’s disease: vertebrate genetics. Cold Spring Harb Perspect Med
2012;2:a009324-a009324. DOI PubMed PMC
91. Teil M, Arotcarena ML, Dehay B. A new rise of non-human primate models of synucleinopathies. Biomedicines 2021;9:272. DOI
PubMed PMC
92. Li H, Su LY, Yang L, et al. A cynomolgus monkey with naturally occurring Parkinson’s disease. Natl Sci Rev 2021;8:nwaa292. DOI
PubMed PMC
93. Porras G, Li Q, Bezard E. Modeling Parkinson’s disease in primates: the MPTP model. Cold Spring Harb Perspect Med
2012;2:a009308. DOI PubMed PMC
94. Tieu K. A guide to neurotoxic animal models of Parkinson’s disease. Cold Spring Harb Perspect Med 2011;1:a009316. DOI
PubMed PMC
95. Lei X, Li H, Huang B, et al. 1-Methyl-4-phenylpyridinium stereotactic infusion completely and specifically ablated the nigrostriatal
dopaminergic pathway in rhesus macaque. PLoS One 2015;10:e0127953. DOI PubMed PMC
96. Huang B, Wu S, Wang Z, et al. Phosphorylated α-synuclein accumulations and lewy body-like pathology distributed in Parkinson’s
disease-related brain areas of aged rhesus monkeys treated with MPTP. Neuroscience 2018;379:302-15. DOI PubMed
97. Koprich JB, Johnston TH, Reyes G, Omana V, Brotchie JM. Towards a non-human primate model of alpha-synucleinopathy for
development of therapeutics for Parkinson’s disease: optimization of AAV1/2 delivery parameters to drive sustained expression of
alpha synuclein and dopaminergic degeneration in macaque. PLoS One 2016;11:e0167235. DOI PubMed PMC
98. Niu Y, Guo X, Chen Y, et al. Early Parkinson’s disease symptoms in α-synuclein transgenic monkeys. Hum Mol Genet
2015;24:2308-17. DOI PubMed PMC
99. Yang W, Wang G, Wang CE, et al. Mutant alpha-synuclein causes age-dependent neuropathology in monkey brain. J Neurosci
2015;35:8345-58. DOI PubMed PMC
100. Blesa J, Przedborski S. Parkinson’s disease: animal models and dopaminergic cell vulnerability. Front Neuroanat 2014;8:155. DOI
PubMed PMC
101. Yang W, Liu Y, Tu Z, et al. CRISPR/Cas9-mediated PINK1 deletion leads to neurodegeneration in rhesus monkeys. Cell Res
2019;29:334-6. DOI PubMed PMC
102. Chen ZZ, Wang JY, Kang Y, et al. PINK1 gene mutation by pair truncated sgRNA/Cas9-D10A in cynomolgus monkeys. Zool Res
2021;42:469-77. DOI PubMed PMC
103. Yang W, Guo X, Tu Z, et al. PINK1 kinase dysfunction triggers neurodegeneration in the primate brain without impacting
mitochondrial homeostasis. Protein Cell 2022;13:26-46. DOI PubMed PMC
104. Yang W, Li S, Li XJ. A CRISPR monkey model unravels a unique function of PINK1 in primate brains. Mol Neurodegener
2019;14:17. DOI PubMed PMC
105. Li H, Wu S, Ma X, et al. Co-editing PINK1 and DJ-1 genes via adeno-associated virus-delivered CRISPR/Cas9 system in adult
monkey brain elicits classical parkinsonian phenotype. Neurosci Bull 2021;37:1271-88. DOI PubMed PMC
106. Grad LI, Rouleau GA, Ravits J, Cashman NR. Clinical spectrum of amyotrophic lateral sclerosis (ALS). Cold Spring Harb Perspect
Med 2017;7:a024117. DOI PubMed PMC
107. Talbott EO, Malek AM, Lacomis D. The epidemiology of amyotrophic lateral sclerosis. Handb Clin Neurol 2016;138:225-38. DOI
PubMed
108. Forman MS, Trojanowski JQ, Lee VM. TDP-43: a novel neurodegenerative proteinopathy. Curr Opin Neurobiol 2007;17:548-55.
DOI PubMed PMC
109. Saberi S, Stauffer JE, Schulte DJ, Ravits J. Neuropathology of amyotrophic lateral sclerosis and its variants. Neurol Clin
2015;33:855-76. DOI PubMed PMC
110. Lagier-Tourenne C, Cleveland DW. Rethinking ALS: the FUS about TDP-43. Cell 2009;136:1001-4. DOI PubMed PMC
111. Cruz S, Cleveland DW. Understanding the role of TDP-43 and FUS/TLS in ALS and beyond. Curr Opin Neurobiol 2011;21:904-19.
DOI PubMed PMC
112. Neumann M, Sampathu DM, Kwong LK, et al. Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral
sclerosis. Science 2006;314:130-3. DOI PubMed