Page 20 - Read Online
P. 20

Li et al. Ageing Neur Dis 2022;2:12  https://dx.doi.org/10.20517/and.2022.14    Page 11 of 13

                    2009;461:916-22.  DOI  PubMed  PMC
               55.       Dubois B, Feldman HH, Jacova C, et al. Advancing research diagnostic criteria for Alzheimer’s disease: the IWG-2 criteria. The
                    Lancet Neurology 2014;13:614-29.  DOI  PubMed
               56.       Kunkle BW, Grenier-Boley B, Sims R, et al; Alzheimer Disease Genetics Consortium (ADGC); European Alzheimer’s Disease
                    Initiative (EADI); Cohorts for Heart and Aging Research in Genomic Epidemiology Consortium (CHARGE); Genetic and
                    Environmental  Risk  in  AD/Defining  Genetic;  Polygenic  and  Environmental  Risk  for  Alzheimer’s  Disease  Consortium
                    (GERAD/PERADES). Genetic meta-analysis of diagnosed Alzheimer’s disease identifies new risk loci and implicates Aβ, tau,
                    immunity and lipid processing. Nat Genet 2019;51:414-30.  DOI  PubMed  PMC
               57.       Masters CL, Bateman R, Blennow K, Rowe CC, Sperling RA, Cummings JL. Alzheimer’s disease. Nat Rev Dis Primers
                    2015;1:15056.  DOI  PubMed
               58.       Götz J, Ittner LM. Animal models of Alzheimer’s disease and frontotemporal dementia. Nat Rev Neurosci 2008;9:532-44.  DOI
                    PubMed
               59.       Sakakibara Y, Sekiya M, Saito T, Saido TC, Iijima KM. Amyloid-β plaque formation and reactive gliosis are required for induction
                    of cognitive deficits in App knock-in mouse models of Alzheimer’s disease. BMC Neurosci 2019;20:13.  DOI  PubMed  PMC
               60.       McGowan E, Eriksen J, Hutton M. A decade of modeling Alzheimer’s disease in transgenic mice. Trends Genet 2006;22:281-9.  DOI
                    PubMed
               61.       Sasaguri H, Hashimoto S, Watamura N, et al. Recent advances in the modeling of Alzheimer’s disease.  Front Neurosci
                    2022;16:807473.  DOI  PubMed  PMC
               62.       Flood DG, Lin YG, Lang DM, et al. A transgenic rat model of Alzheimer’s disease with extracellular Abeta deposition. Neurobiol
                    Aging 2009;30:1078-90.  DOI  PubMed
               63.       Elder GA, Gama Sosa MA, De Gasperi R, Dickstein DL, Hof PR. Presenilin transgenic mice as models of Alzheimer’s disease. Brain
                    Struct Funct 2010;214:127-43.  DOI  PubMed  PMC
               64.       Leuzy A, Smith R, Ossenkoppele R, et al. Diagnostic performance of RO948 F 18 tau positron emission tomography in the
                    differentiation of Alzheimer disease from other neurodegenerative disorders. JAMA Neurol 2020;77:955-65.  DOI  PubMed  PMC
               65.       Götz J, Gladbach A, Pennanen L, et al. Animal models reveal role for tau phosphorylation in human disease. Biochim Biophys Acta
                    2010;1802:860-71.  DOI  PubMed
               66.       Eskandari-Sedighi G, Daude N, Gapeshina H, et al. The CNS in inbred transgenic models of 4-repeat Tauopathy develops consistent
                    tau seeding capacity yet focal and diverse patterns of protein deposition. Mol Neurodegener 2017;12:72.  DOI  PubMed  PMC
               67.       Myers A, McGonigle P. Overview of transgenic mouse models for Alzheimer’s disease. Curr Protoc Neurosci 2019;89:e81.  DOI
                    PubMed
               68.       Esquerda-Canals G, Montoliu-Gaya L, Guell-Bosch J, Villegas S. Mouse models of Alzheimer’s disease. J Alzheimers Dis
                    2017;57:1171-83.  DOI  PubMed
               69.       Kragh PM, Nielsen AL, Li J, et al. Hemizygous minipigs produced by random gene insertion and handmade cloning express the
                    Alzheimer’s disease-causing dominant mutation APPsw. Transgenic Res 2009;18:545-58.  DOI  PubMed
               70.       Jakobsen JE, Johansen MG, Schmidt M, et al. Generation of minipigs with targeted transgene insertion by recombinase-mediated
                    cassette exchange (RMCE) and somatic cell nuclear transfer (SCNT). Transgenic Res 2013;22:709-23.  DOI  PubMed  PMC
               71.       Søndergaard LV, Ladewig J, Dagnæs-Hansen F, Herskin MS, Holm IE. Object recognition as a measure of memory in 1-2 years old
                    transgenic minipigs carrying the APPsw mutation for Alzheimer’s disease. Transgenic Res 2012;21:1341-8.  DOI  PubMed
               72.       King A. The search for better animal models of Alzheimer’s disease. Nature 2018;559:S13-5.  DOI  PubMed
               73.       Beckman D, Morrison JH. Towards developing a rhesus monkey model of early Alzheimer’s disease focusing on women’s health.
                    Am J Primatol 2021;83:e23289.  DOI  PubMed
               74.       Heuer E, Rosen RF, Cintron A, Walker LC. Nonhuman primate models of Alzheimer-like cerebral proteopathy. Curr Pharm Des
                    2012;18:1159-69.  DOI  PubMed  PMC
               75.       Paspalas CD, Carlyle BC, Leslie S, et al. The aged rhesus macaque manifests Braak stage III/IV Alzheimer’s-like pathology.
                    Alzheimers Dement 2018;14:680-91.  DOI  PubMed  PMC
               76.       Arnsten AFT, Datta D, Leslie S, Yang ST, Wang M, Nairn AC. Alzheimer’s-like pathology in aging rhesus macaques: unique
                    opportunity to study the etiology and treatment of Alzheimer’s disease. Proc Natl Acad Sci U S A ;2019:26230-8.  DOI  PubMed
                    PMC
               77.       Arnsten AFT, Datta D, Preuss TM. Studies of aging nonhuman primates illuminate the etiology of early-stage Alzheimer’s-like
                    neuropathology: An evolutionary perspective. Am J Primatol 2021;83:e23254.  DOI  PubMed  PMC
               78.       Yang M, Miao J, Rizak J, et al. Alzheimer’s disease and methanol toxicity (part 2): lessons from four rhesus macaques (Macaca
                    mulatta) chronically fed methanol. J Alzheimers Dis 2014;41(4):1131-47.  DOI  PubMed
               79.       Zhai R, Rizak J, Zheng N, et al. Alzheimer’s disease-like pathologies and cognitive impairments induced by formaldehyde in non-
                    human primates. Curr Alzheimer Res 2018;15:1304-21.  DOI  PubMed
               80.       Beckman D, Ott S, Donis-Cox K, et al. Oligomeric Aβ in the monkey brain impacts synaptic integrity and induces accelerated
                    cortical aging. Proc Natl Acad Sci U S A ;2019:26239-46.  DOI  PubMed  PMC
               81.       Forny-Germano L, Lyra e Silva NM, Batista AF, et al. Alzheimer’s disease-like pathology induced by amyloid-β oligomers in
                    nonhuman primates. J Neurosci 2014;34:13629-43.  DOI  PubMed  PMC
               82.       Yue F, Feng S, Lu C, et al. Synthetic amyloid-β oligomers drive early pathological progression of Alzheimer’s disease in nonhuman
   15   16   17   18   19   20   21   22   23   24   25