Page 88 - Read Online
P. 88
Page 46 McGivern et al. Art Int Surg 2023;3:27-47 https://dx.doi.org/10.20517/ais.2022.39
hepatocellular carcinoma. J Am Coll Surg 2015;220:28-37. DOI PubMed
78. Zhang J, Qiao QL, Guo XC, Zhao JX. Application of three-dimensional visualization technique in preoperative planning of
progressive hilar cholangiocarcinoma. Am J Transl Res 2018;10:1730-5. PubMed PMC
79. Okuda Y, Taura K, Seo S, et al. Usefulness of operative planning based on 3-dimensional CT cholangiography for biliary
malignancies. Surgery 2015;158:1261-71. DOI PubMed
80. Okamoto T, Onda S, Yasuda J, Yanaga K, Suzuki N, Hattori A. Navigation surgery using an augmented reality for pancreatectomy.
Dig Surg 2015;32:117-23. DOI PubMed
81. Fortmeier D, Mastmeyer A, Schröder J, Handels H. A virtual reality system for PTCD simulation using direct visuo-haptic rendering
of partially segmented image data. IEEE J Biomed Health Inform 2016;20:355-66. DOI PubMed
82. Fusaglia M, Hess H, Schwalbe M, et al. A clinically applicable laser-based image-guided system for laparoscopic liver procedures.
Int J Comput Assist Radiol Surg 2016;11:1499-513. DOI PubMed
83. Ntourakis D, Memeo R, Soler L, Marescaux J, Mutter D, Pessaux P. Augmented reality guidance for the resection of missing
colorectal liver metastases: an initial experience. World J Surg 2016;40:419-26. DOI PubMed
84. Mastmeyer A, Fortmeier D, Handels H. Evaluation of direct haptic 4D volume rendering of partially segmented data for liver
puncture simulation. Sci Rep 2017;7:671. DOI PubMed PMC
85. Sauer IM, Queisner M, Tang P, et al. Mixed reality in visceral surgery: development of a suitable workflow and evaluation of
intraoperative use-cases. Ann Surg 2017;266:706-12. DOI PubMed
86. Cai W, Fan Y, Hu H, Xiang N, Fang C, Jia F. Postoperative liver volume was accurately predicted by a medical image three
dimensional visualization system in hepatectomy for liver cancer. Surg Oncol 2017;26:188-94. DOI PubMed
87. Miyamoto R, Oshiro Y, Nakayama K, et al. Three-dimensional simulation of pancreatic surgery showing the size and location of the
main pancreatic duct. Surg Today 2017;47:357-64. DOI PubMed
88. Hu M, Hu H, Cai W, et al. The safety and feasibility of three-dimensional visualization technology assisted right posterior lobe allied
with part of V and VIII sectionectomy for right hepatic malignancy therapy. J Laparoendosc Adv Surg Tech A 2018;28:586-94. DOI
PubMed
89. Mise Y, Hasegawa K, Satou S, et al. How has virtual hepatectomy changed the practice of liver surgery? Ann Surg 2018;268:127-33.
DOI
90. Mascagni P, Fiorillo C, Urade T, et al. Formalizing video documentation of the critical view of safety in laparoscopic
cholecystectomy: a step towards artificial intelligence assistance to improve surgical safety. Surg Endosc 2020;34:2709-14. DOI
PubMed
91. Teatini A, Pelanis E, Aghayan DL, et al. The effect of intraoperative imaging on surgical navigation for laparoscopic liver resection
surgery. Sci Rep 2019;9:18687. DOI PubMed PMC
92. Ho H, Yu HB, Bartlett A, Hunter P. An in silico pipeline for subject-specific hemodynamics analysis in liver surgery planning.
Comput Methods Biomech Biomed Engin 2020;23:138-42. DOI PubMed
93. Prevost GA, Eigl B, Paolucci I, et al. Efficiency, accuracy and clinical applicability of a new image-guided surgery system in 3D
laparoscopic liver surgery. J Gastrointest Surg 2020;24:2251-8. DOI PubMed
94. Sandal B, Hacioglu Y, Salihoglu Z, Yagiz N. Fuzzy logic preanesthetic risk evaluation of laparoscopic cholecystectomy operations.
Am Surg 2023;89:414-23. DOI PubMed
95. Cervantes-sanchez F, Maktabi M, Köhler H, et al. Automatic tissue segmentation of hyperspectral images in liver and head neck
surgeries using machine learning. Art Int Surg 2021;1:22-37. DOI
96. Tokuyasu T, Iwashita Y, Matsunobu Y, et al. Development of an artificial intelligence system using deep learning to indicate
anatomical landmarks during laparoscopic cholecystectomy. Surg Endosc 2021;35:1651-8. DOI PubMed PMC
97. Guzmán-García C, Gómez-Tome M, Sánchez-González P, Oropesa I, Gómez EJ. Speech-based surgical phase recognition for non-
intrusive surgical skills' assessment in educational contexts. Sensors 2021;21:1330. DOI PubMed PMC
98. Imler TD, Sherman S, Imperiale TF, et al. Provider-specific quality measurement for ERCP using natural language processing.
Gastrointest Endosc 2018;87:164-173.e2. DOI PubMed PMC
99. Ruzzenente A, Bagante F, Poletto E, et al. A machine learning analysis of difficulty scoring systems for laparoscopic liver surgery.
Surg Endosc 2022;36:8869-80. DOI PubMed PMC
100. Mascagni P, Alapatt D, Laracca GG, et al. Multicentric validation of EndoDigest: a computer vision platform for video
documentation of the critical view of safety in laparoscopic cholecystectomy. Surg Endosc 2022;36:8379-86. DOI PubMed
101. Mascagni P, Vardazaryan A, Alapatt D, et al. Artificial intelligence for surgical safety: automatic assessment of the critical view of
safety in laparoscopic cholecystectomy using deep learning. Ann Surg 2022;275:955-61. DOI PubMed
102. Tranter-entwistle I, Eglinton T, Connor S, Hugh TJ. Operative difficulty in laparoscopic cholecystectomy: considering the role of
machine learning platforms in clinical practice. Art Int Surg 2022;2:46-56. DOI
103. Liu R, An J, Wang Z, et al. Artificial intelligence in laparoscopic cholecystectomy: does computer vision outperform human vision?
Art Int Surg 2022;2:80-92. DOI
104. Ugail H, Abubakar A, Elmahmudi A, Wilson C, Thomson B. The use of pre-trained deep learning models for the photographic
assessment of donor livers for transplantation. Art Int Surg 2022;2:101-19. DOI
105. Mojtahed A, Núñez L, Connell J, et al. Repeatability and reproducibility of deep-learning-based liver volume and Couinaud segment
volume measurement tool. Abdom Radiol 2022;47:143-51. DOI PubMed PMC