Page 87 - Read Online
P. 87

McGivern et al. Art Int Surg 2023;3:27-47  https://dx.doi.org/10.20517/ais.2022.39   Page 45

                    preoperative non-contrast enhanced computed tomography. HPB 2020;22:S384.  DOI
               49.       Merath K, Hyer JM, Mehta R, et al. Use of machine learning for prediction of patient risk of postoperative complications after liver,
                    pancreatic, and colorectal surgery. J Gastrointest Surg 2020;24:1843-51.  DOI  PubMed
               50.       Saillard C, Schmauch B, Laifa O, et al. Predicting survival after hepatocellular carcinoma resection using deep learning on
                    histological slides. Hepatology 2020;72:2000-13.  DOI
               51.       Cesaretti M, Brustia R, Goumard C, et al. Use of artificial intelligence as an innovative method for liver graft macrosteatosis
                    assessment. Liver Transpl 2020;26:1224-32.  DOI  PubMed
               52.       Mai  RY,  Lu  HZ,  Bai  T,  et  al.  Artificial  neural  network  model  for  preoperative  prediction  of  severe  liver  failure  after
                    hemihepatectomy in patients with hepatocellular carcinoma. Surgery 2020;168:643-52.  DOI
               53.       Liu CL, Soong RS, Lee WC, Jiang GW, Lin YC. Predicting short-term survival after liver transplantation using machine learning. Sci
                    Rep 2020;10:5654.  DOI  PubMed  PMC
               54.       Schoenberg MB, Bucher JN, Koch D, et al. A novel machine learning algorithm to predict disease free survival after resection of
                    hepatocellular carcinoma. Ann Transl Med 2020;8:434.  DOI  PubMed  PMC
               55.       Szpakowski JL, Tucker LY. Outcomes of gallbladder polyps and their association with gallbladder cancer in a 20-year cohort. JAMA
                    Netw Open 2020;3:e205143.  DOI  PubMed  PMC
               56.       Capretti G, Bonifacio C, De Palma C, et al. A machine learning risk model based on preoperative computed tomography scan to
                    predict postoperative outcomes after pancreatoduodenectomy. Updates Surg 2022;74:235-43.  DOI  PubMed
               57.       Sun LY, Ouyang Q, Cen WJ, Wang F, Tang WT, Shao JY. A model based on artificial intelligence algorithm for monitoring
                    recurrence of HCC after hepatectomy. Am Surg 2021;11:31348211063549.  DOI  PubMed
               58.       Xie F, Chen Q, Zhou Y, et al. Characterization of patients with advanced chronic pancreatitis using natural language processing of
                    radiology reports. PLoS One 2020;15:e0236817.  DOI  PubMed  PMC
               59.       Hayashi K, Ono Y, Takamatsu M, et al. Prediction of recurrence pattern of pancreatic cancer post-pancreatic surgery using histology-
                    based supervised machine learning algorithms: a single-center retrospective study. Ann Surg Oncol ;2022:4624-34.  DOI  PubMed
               60.       Li X, Wan Y, Lou J, et al. Preoperative recurrence prediction in pancreatic ductal adenocarcinoma after radical resection using
                    radiomics of diagnostic computed tomography. EClinicalMedicine 2022;43:101215.  DOI  PubMed  PMC
               61.       Noh B, Park YM, Kwon Y, et al. Machine learning-based survival rate prediction of Korean hepatocellular carcinoma patients using
                    multi-center data. BMC Gastroenterol 2022;22:85.  DOI  PubMed  PMC
               62.       Morris-Stiff G, Sarvepalli S, Hu B, et al. The natural history of asymptomatic gallstones: a longitudinal study and prediction model.
                    Clin Gastroenterol Hepatol 2023;21:319-327.e4.  DOI  PubMed
               63.       Narayan RR, Abadilla N, Yang L, et al. Artificial intelligence for prediction of donor liver allograft steatosis and early post-
                    transplantation graft failure. HPB 2022;24:764-71.  DOI  PubMed
               64.       Cotter G, Beal EW, Poultsides GA, et al. Using machine learning to preoperatively stratify prognosis among patients with gallbladder
                    cancer: a multi-institutional analysis. HPB 2022;24:1980-8.  DOI  PubMed
               65.       Spinczyk D, Karwan A, Rudnicki J, Wróblewski T. Stereoscopic liver surface reconstruction. Wideochir Inne Tech Maloinwazyjne
                    2012;7:181-7.  DOI  PubMed  PMC
               66.       Okamoto T, Onda S, Matsumoto M, et al. Utility of augmented reality system in hepatobiliary surgery. J Hepatobiliary Pancreat Sci
                    2013;20:249-53.  DOI  PubMed
               67.       Fang CH, Liu J, Fan YF, Yang J, Xiang N, Zeng N. Outcomes of hepatectomy for hepatolithiasis based on 3-dimensional
                    reconstruction technique. J Am Coll Surg 2013;217:280-8.  DOI  PubMed
               68.       Zein NN, Hanouneh IA, Bishop PD, et al. Three-dimensional print of a liver for preoperative planning in living donor liver
                    transplantation. Liver Transpl 2013;19:1304-10.  DOI  PubMed
               69.       Shahin O, Beširević A, Kleemann M, Schlaefer A. Ultrasound-based tumor movement compensation during navigated laparoscopic
                    liver interventions. Surg Endosc 2014;28:1734-41.  DOI  PubMed
                                                                       TM
               70.       Yang X, Yu HC, Choi Y, et al. Development and usability testing of Dr. Liver : a user-centered 3D virtual liver surgery planning
                    system. HFES 2014;58:698-702.  DOI
               71.       Fang CH, Kong D, Wang X, et al. Three-dimensional reconstruction of the peripancreatic vascular system based on computed
                    tomographic angiography images and its clinical application in the surgical management of pancreatic tumors. Pancreas
                    2014;43:389-95.  DOI  PubMed
               72.       Bégin A, Martel G, Lapointe R, et al. Accuracy of preoperative automatic measurement of the liver volume by CT-scan combined to
                    a 3D virtual surgical planning software (3DVSP). Surg Endosc 2014;28:3408-12.  DOI  PubMed
               73.       Bliznakova K, Kolev N, Buliev I, et al. Computer aided preoperative evaluation of the residual liver volume using computed
                    tomography images. J Digit Imaging 2015;28:231-9.  DOI  PubMed  PMC
               74.       Katić D, Julliard C, Wekerle AL, et al. LapOntoSPM: an ontology for laparoscopic surgeries and its application to surgical phase
                    recognition. Int J Comput Assist Radiol Surg 2015;10:1427-34.  DOI
               75.       Song Y, Totz J, Thompson S, et al. Locally rigid, vessel-based registration for laparoscopic liver surgery. Int J Comput Assist Radiol
                    Surg 2015;10:1951-61.  DOI  PubMed  PMC
               76.       Wang G, Zhang S, Xie H, Metaxas DN, Gu L. A homotopy-based sparse representation for fast and accurate shape prior modeling in
                    liver surgical planning. Med Image Anal 2015;19:176-86.  DOI  PubMed
               77.       Fang CH, Tao HS, Yang J, et al. Impact of three-dimensional reconstruction technique in the operation planning of centrally located
   82   83   84   85   86   87   88   89   90   91   92