Page 87 - Read Online
P. 87
McGivern et al. Art Int Surg 2023;3:27-47 https://dx.doi.org/10.20517/ais.2022.39 Page 45
preoperative non-contrast enhanced computed tomography. HPB 2020;22:S384. DOI
49. Merath K, Hyer JM, Mehta R, et al. Use of machine learning for prediction of patient risk of postoperative complications after liver,
pancreatic, and colorectal surgery. J Gastrointest Surg 2020;24:1843-51. DOI PubMed
50. Saillard C, Schmauch B, Laifa O, et al. Predicting survival after hepatocellular carcinoma resection using deep learning on
histological slides. Hepatology 2020;72:2000-13. DOI
51. Cesaretti M, Brustia R, Goumard C, et al. Use of artificial intelligence as an innovative method for liver graft macrosteatosis
assessment. Liver Transpl 2020;26:1224-32. DOI PubMed
52. Mai RY, Lu HZ, Bai T, et al. Artificial neural network model for preoperative prediction of severe liver failure after
hemihepatectomy in patients with hepatocellular carcinoma. Surgery 2020;168:643-52. DOI
53. Liu CL, Soong RS, Lee WC, Jiang GW, Lin YC. Predicting short-term survival after liver transplantation using machine learning. Sci
Rep 2020;10:5654. DOI PubMed PMC
54. Schoenberg MB, Bucher JN, Koch D, et al. A novel machine learning algorithm to predict disease free survival after resection of
hepatocellular carcinoma. Ann Transl Med 2020;8:434. DOI PubMed PMC
55. Szpakowski JL, Tucker LY. Outcomes of gallbladder polyps and their association with gallbladder cancer in a 20-year cohort. JAMA
Netw Open 2020;3:e205143. DOI PubMed PMC
56. Capretti G, Bonifacio C, De Palma C, et al. A machine learning risk model based on preoperative computed tomography scan to
predict postoperative outcomes after pancreatoduodenectomy. Updates Surg 2022;74:235-43. DOI PubMed
57. Sun LY, Ouyang Q, Cen WJ, Wang F, Tang WT, Shao JY. A model based on artificial intelligence algorithm for monitoring
recurrence of HCC after hepatectomy. Am Surg 2021;11:31348211063549. DOI PubMed
58. Xie F, Chen Q, Zhou Y, et al. Characterization of patients with advanced chronic pancreatitis using natural language processing of
radiology reports. PLoS One 2020;15:e0236817. DOI PubMed PMC
59. Hayashi K, Ono Y, Takamatsu M, et al. Prediction of recurrence pattern of pancreatic cancer post-pancreatic surgery using histology-
based supervised machine learning algorithms: a single-center retrospective study. Ann Surg Oncol ;2022:4624-34. DOI PubMed
60. Li X, Wan Y, Lou J, et al. Preoperative recurrence prediction in pancreatic ductal adenocarcinoma after radical resection using
radiomics of diagnostic computed tomography. EClinicalMedicine 2022;43:101215. DOI PubMed PMC
61. Noh B, Park YM, Kwon Y, et al. Machine learning-based survival rate prediction of Korean hepatocellular carcinoma patients using
multi-center data. BMC Gastroenterol 2022;22:85. DOI PubMed PMC
62. Morris-Stiff G, Sarvepalli S, Hu B, et al. The natural history of asymptomatic gallstones: a longitudinal study and prediction model.
Clin Gastroenterol Hepatol 2023;21:319-327.e4. DOI PubMed
63. Narayan RR, Abadilla N, Yang L, et al. Artificial intelligence for prediction of donor liver allograft steatosis and early post-
transplantation graft failure. HPB 2022;24:764-71. DOI PubMed
64. Cotter G, Beal EW, Poultsides GA, et al. Using machine learning to preoperatively stratify prognosis among patients with gallbladder
cancer: a multi-institutional analysis. HPB 2022;24:1980-8. DOI PubMed
65. Spinczyk D, Karwan A, Rudnicki J, Wróblewski T. Stereoscopic liver surface reconstruction. Wideochir Inne Tech Maloinwazyjne
2012;7:181-7. DOI PubMed PMC
66. Okamoto T, Onda S, Matsumoto M, et al. Utility of augmented reality system in hepatobiliary surgery. J Hepatobiliary Pancreat Sci
2013;20:249-53. DOI PubMed
67. Fang CH, Liu J, Fan YF, Yang J, Xiang N, Zeng N. Outcomes of hepatectomy for hepatolithiasis based on 3-dimensional
reconstruction technique. J Am Coll Surg 2013;217:280-8. DOI PubMed
68. Zein NN, Hanouneh IA, Bishop PD, et al. Three-dimensional print of a liver for preoperative planning in living donor liver
transplantation. Liver Transpl 2013;19:1304-10. DOI PubMed
69. Shahin O, Beširević A, Kleemann M, Schlaefer A. Ultrasound-based tumor movement compensation during navigated laparoscopic
liver interventions. Surg Endosc 2014;28:1734-41. DOI PubMed
TM
70. Yang X, Yu HC, Choi Y, et al. Development and usability testing of Dr. Liver : a user-centered 3D virtual liver surgery planning
system. HFES 2014;58:698-702. DOI
71. Fang CH, Kong D, Wang X, et al. Three-dimensional reconstruction of the peripancreatic vascular system based on computed
tomographic angiography images and its clinical application in the surgical management of pancreatic tumors. Pancreas
2014;43:389-95. DOI PubMed
72. Bégin A, Martel G, Lapointe R, et al. Accuracy of preoperative automatic measurement of the liver volume by CT-scan combined to
a 3D virtual surgical planning software (3DVSP). Surg Endosc 2014;28:3408-12. DOI PubMed
73. Bliznakova K, Kolev N, Buliev I, et al. Computer aided preoperative evaluation of the residual liver volume using computed
tomography images. J Digit Imaging 2015;28:231-9. DOI PubMed PMC
74. Katić D, Julliard C, Wekerle AL, et al. LapOntoSPM: an ontology for laparoscopic surgeries and its application to surgical phase
recognition. Int J Comput Assist Radiol Surg 2015;10:1427-34. DOI
75. Song Y, Totz J, Thompson S, et al. Locally rigid, vessel-based registration for laparoscopic liver surgery. Int J Comput Assist Radiol
Surg 2015;10:1951-61. DOI PubMed PMC
76. Wang G, Zhang S, Xie H, Metaxas DN, Gu L. A homotopy-based sparse representation for fast and accurate shape prior modeling in
liver surgical planning. Med Image Anal 2015;19:176-86. DOI PubMed
77. Fang CH, Tao HS, Yang J, et al. Impact of three-dimensional reconstruction technique in the operation planning of centrally located