Page 85 - Read Online
P. 85

McGivern et al. Art Int Surg 2023;3:27-47  https://dx.doi.org/10.20517/ais.2022.39   Page 43

               Availability of data and materials
               Not applicable.


               Financial support and sponsorship
               None.


               Conflicts of interest
               All authors declared that there are no conflicts of interest.


               Ethical approval and consent to participate
               Not applicable.


               Consent for publication
               Not applicable.


               Copyright
               © The Author(s) 2023.

               REFERENCES
               1.       McCarthy J. What is artificial intelligence? Available from: https://www.diochnos.com/about/McCarthyWhatisAI.pdf [Last accessed
                    on 23 Mar 2023].
               2.       Hashimoto DA, Rosman G, Rus D, Meireles OR. Artificial intelligence in surgery: promises and perils. Available from: https://
                    journals.lww.com/annalsofsurgery/Abstract/2018/07000/Artificial_Intelligence_in_Surgery__Promises_and.13.aspx [Last accessed
                    on 23 Mar 2023].
               3.       Gumbs AA, Alexander F, Karcz K, et al. White paper: definitions of artificial intelligence and autonomous actions in clinical surgery.
                    Art Int Surg 2022;2:93-100.  DOI
               4.       Gumbs AA, Perretta S, d’Allemagne B, Chouillard E. What is Artificial Intelligence Surgery? Art Int Surg 2021;1:1-10.  DOI
               5.       Elyan E, Vuttipittayamongkol P, Johnston P, et al. Computer vision and machine learning for medical image analysis: recent
                    advances, challenges, and way forward. Art Int Surg ;2022:2.  DOI
               6.       Bari H, Wadhwani S, Dasari BVM. Role of artificial intelligence in hepatobiliary and pancreatic surgery. World J Gastrointest Surg
                    2021;13:7-18.  DOI  PubMed  PMC
               7.       Mauro A, Greco M, Grimaldi M. What is big data? Am J Phys 2015;1644:97-104.  DOI
               8.       Vedula SS, Hager GD. Surgical data science: The new knowledge domain. Innov Surg Sci 2017;2:109-21.  DOI  PubMed  PMC
               9.       NHS England. 2022/23 priorities and operational planning guidance. Available from: https://www.england.nhs.uk/wp-content/
                    uploads/2022/02/20211223-B1160-2022-23-priorities-and-operational-planning-guidance-v3.2.pdf [Last accessed on 23 Mar 2023].
               10.       Tricco AC, Lillie E, Zarin W, et al. PRISMA extension for scoping reviews (PRISMA-ScR): checklist and explanation. Ann Intern
                    Med 2018;169:467-73.  DOI  PubMed
               11.       Knight SR, Ots R, Maimbo M, Drake TM, Fairfield CJ, Harrison EM. Systematic review of the use of big data to improve surgery in
                    low- and middle-income countries. Br J Surg 2019;106:e62-72.  DOI  PubMed  PMC
               12.       Covidence. Veritas health innovation, Melbourne, Australia. Available from: https://www.covidence.org/ [Last accessed on 23 Mar
                    2023].
               13.       Săftoiu A, Vilmann P, Gorunescu F, et al. Efficacy of an artificial neural network-based approach to endoscopic ultrasound
                    elastography in diagnosis of focal pancreatic masses. Clin Gastroenterol Hepatol 2012;10:84-90.e1.  DOI  PubMed
               14.       Wu K, Chen X, Ding M. Deep learning based classification of focal liver lesions with contrast-enhanced ultrasound. Optik
                    2014;125:4057-63.  DOI
               15.       Gatos I, Tsantis S, Karamesini M, Skouroliakou A, Kagadis G. Development of a support vector machine - based image analysis
                    system for focal liver lesions classification in magnetic resonance images. J Phys Conf Ser 2015;633:012116.  DOI
               16.       Roch AM, Mehrabi S, Krishnan A, et al. Automated pancreatic cyst screening using natural language processing: a new tool in the
                    early detection of pancreatic cancer. HPB 2015;17:447-53.  DOI  PubMed  PMC
               17.       Sada Y, Hou J, Richardson P, El-Serag H, Davila J. Validation of case finding algorithms for hepatocellular cancer from
                    administrative data and electronic health records using natural language processing. Med Care 2016;54:e9-14.  DOI  PubMed  PMC
               18.       Kondo S, Takagi K, Nishida M, et al. Computer-aided diagnosis of focal liver lesions using contrast-enhanced ultrasonography with
                    perflubutane microbubbles. IEEE Trans Med Imaging 2017;36:1427-37.  DOI  PubMed
               19.       Yang H, Zhang X, Cai XY, et al. From big data to diagnosis and prognosis: gene expression signatures in liver hepatocellular
                    carcinoma. PeerJ 2017;5:e3089.  DOI  PubMed  PMC
   80   81   82   83   84   85   86   87   88   89   90