Page 86 - Read Online
P. 86
Page 44 McGivern et al. Art Int Surg 2023;3:27-47 https://dx.doi.org/10.20517/ais.2022.39
20. Kuwahara T, Hara K, Mizuno N, et al. Usefulness of deep learning analysis for the diagnosis of malignancy in intraductal papillary
mucinous neoplasms of the pancreas. Clin Transl Gastroenterol 2019;10:1-8. DOI PubMed PMC
21. Shen X, Yang F, Yang P, et al. Non-invasive diagnosis model for pancreatic cystic tumors based on machine learning-radiomics
using contrast-enhanced CT. Available from: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3294088 [Last accessed on 27 Mar
2023].
22. Xu L, Yang P, Liang W, et al. A radiomics approach based on support vector machine using MR images for preoperative lymph node
status evaluation in intrahepatic cholangiocarcinoma. Theranostics 2019;9:5374-85. DOI PubMed PMC
23. Brown AD, Kachura JR. Natural language processing of radiology reports in patients with hepatocellular carcinoma to predict
radiology resource utilization. J Am Coll Radiol 2019;16:840-4. DOI PubMed
24. Watson MD, Lyman WB, Passeri MJ, et al. Use of artificial intelligence deep learning to determine the malignant potential of
pancreatic cystic neoplasms with preoperative computed tomography imaging. Am Surg 2021;87:602-7. DOI PubMed
25. Liu H, Xu Y, Zhang Z, et al. A natural language processing pipeline of chinese free-text radiology reports for liver cancer diagnosis.
IEEE Access 2020;8:159110-9. DOI
26. Mao B, Ma J, Duan S, Xia Y, Tao Y, Zhang L. Preoperative classification of primary and metastatic liver cancer via machine
learning-based ultrasound radiomics. Eur Radiol 2021;31:4576-86. DOI
27. Jang SI, Kim YJ, Kim EJ, et al. Diagnostic performance of endoscopic ultrasound-artificial intelligence using deep learning analysis
of gallbladder polypoid lesions. J Gastroenterol Hepatol 2021;36:3548-55. DOI PubMed
28. Li D, Du B, Shen Y, Ge L, Lv H. Artificial intelligence-assisted visual sensing technology under duodenoscopy of gallbladder stones.
J Sensors 2021;2021:1-13. DOI
29. Kim T, Choi YH, Choi JH, Lee SH, Lee S, Lee IS. Gallbladder polyp classification in ultrasound images using an ensemble
convolutional neural network model. J Clin Med 2021;10:3585. DOI PubMed PMC
30. Yamashita R, Bird K, Cheung PY, et al. Automated identification and measurement extraction of pancreatic cystic lesions from free-
text radiology reports using natural language processing. Radiol Artif Intell 2022;4:e210092. DOI PubMed PMC
31. Chong H, Gong Y, Zhang Y, Dai Y, Sheng R, Zeng M. Radiomics on gadoxetate disodium-enhanced mri: non-invasively identifying
glypican 3-positive hepatocellular carcinoma and postoperative recurrence. Acad Radiol 2023;30:49-63. DOI PubMed
32. Liu Y, Liu YZ, Sun L, Zen Y, Inomoto C, Yeh MM. Subtyping of hepatocellular adenoma: a machine learning-based approach.
Virchows Arch 2022;481:49-61. DOI PubMed
33. Schuessler M, Saner F, Al-Rashid F, Schlosser T. Diagnostic accuracy of coronary computed tomography angiography-derived
fractional flow reserve (CT-FFR) in patients before liver transplantation using CT-FFR machine learning algorithm. Eur Radiol
2022;32:8761-8. DOI PubMed PMC
34. Chang Y, Wu Q, Chi L, Huo H, Li Q. Adoption of combined detection technology of tumor markers via deep learning algorithm in
diagnosis and prognosis of gallbladder carcinoma. J Supercomput 2022;78:3955-75. DOI
35. Kooragayala K, Crudeli C, Kalola A, et al. Utilization of natural language processing software to identify worrisome pancreatic
lesions. Ann Surg Oncol 2022;29:8513-9. DOI
36. Singal AG, Mukherjee A, Elmunzer BJ, et al. Machine learning algorithms outperform conventional regression models in predicting
development of hepatocellular carcinoma. Am J Gastroenterol 2013;108:1723-30. DOI PubMed PMC
37. Banerjee S, Wang DS, Kim HJ, et al. A computed tomography radiogenomic biomarker predicts microvascular invasion and clinical
outcomes in hepatocellular carcinoma. Hepatology 2015;62:792-800. DOI PubMed PMC
38. Walczak S, Velanovich V. An evaluation of artificial neural networks in predicting pancreatic cancer survival. J Gastrointest Surg
2017;21:1606-12. DOI PubMed
39. Zhou Y, He L, Huang Y, et al. CT-based radiomics signature: a potential biomarker for preoperative prediction of early recurrence in
hepatocellular carcinoma. Abdom Radiol 2017;42:1695-704. DOI PubMed
40. Zheng BH, Liu LZ, Zhang ZZ, et al. Radiomics score: a potential prognostic imaging feature for postoperative survival of solitary
HCC patients. BMC Cancer 2018;18:1148. DOI PubMed PMC
41. Ivanics T, Nelson W, Patel MS, et al. The toronto postliver transplantation hepatocellular carcinoma recurrence calculator: a machine
learning approach. Liver Transpl 2022;28:593-602. DOI PubMed
42. Sala Elarre P, Oyaga-Iriarte E, Yu KH, et al. Use of machine-learning algorithms in intensified preoperative therapy of pancreatic
cancer to predict individual risk of relapse. Cancers 2019;11:606. DOI PubMed PMC
43. Marinelli B, Kang M, Martini M, et al. Combination of active transfer learning and natural language processing to improve liver
volumetry using surrogate metrics with deep learning. Radiol Artif Intell 2019;1:e180019. DOI PubMed PMC
44. Nasief H, Zheng C, Schott D, et al. A machine learning based delta-radiomics process for early prediction of treatment response of
pancreatic cancer. NPJ Precis Oncol 2019;3:25. DOI PubMed PMC
45. Shan QY, Hu HT, Feng ST, et al. CT-based peritumoral radiomics signatures to predict early recurrence in hepatocellular carcinoma
after curative tumor resection or ablation. Cancer Imaging 2019;19:11. DOI
46. Chen Y, Liu Z, Mo Y, et al. Prediction of post-hepatectomy liver failure in patients with hepatocellular carcinoma based on radiomics
using Gd-EOB-DTPA-enhanced MRI: the liver failure model. Front Oncol 2021;11:605296. DOI PubMed PMC
47. Han IW, Cho K, Ryu Y, et al. Risk prediction platform for pancreatic fistula after pancreatoduodenectomy using artificial
intelligence. World J Gastroenterol 2020;26:4453-64. DOI PubMed PMC
48. Kambakamba P, Mannil M, Herrera P, et al. Machine learning based texture analysis predicts postoperative pancreatic fistula in