Page 86 - Read Online
P. 86

Page 44                         McGivern et al. Art Int Surg 2023;3:27-47  https://dx.doi.org/10.20517/ais.2022.39

               20.       Kuwahara T, Hara K, Mizuno N, et al. Usefulness of deep learning analysis for the diagnosis of malignancy in intraductal papillary
                    mucinous neoplasms of the pancreas. Clin Transl Gastroenterol 2019;10:1-8.  DOI  PubMed  PMC
               21.       Shen X, Yang F, Yang P, et al. Non-invasive diagnosis model for pancreatic cystic tumors based on machine learning-radiomics
                    using contrast-enhanced CT. Available from: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3294088 [Last accessed on 27 Mar
                    2023].
               22.       Xu L, Yang P, Liang W, et al. A radiomics approach based on support vector machine using MR images for preoperative lymph node
                    status evaluation in intrahepatic cholangiocarcinoma. Theranostics 2019;9:5374-85.  DOI  PubMed  PMC
               23.       Brown AD, Kachura JR. Natural language processing of radiology reports in patients with hepatocellular carcinoma to predict
                    radiology resource utilization. J Am Coll Radiol 2019;16:840-4.  DOI  PubMed
               24.       Watson MD, Lyman WB, Passeri MJ, et al. Use of artificial intelligence deep learning to determine the malignant potential of
                    pancreatic cystic neoplasms with preoperative computed tomography imaging. Am Surg 2021;87:602-7.  DOI  PubMed
               25.       Liu H, Xu Y, Zhang Z, et al. A natural language processing pipeline of chinese free-text radiology reports for liver cancer diagnosis.
                    IEEE Access 2020;8:159110-9.  DOI
               26.       Mao B, Ma J, Duan S, Xia Y, Tao Y, Zhang L. Preoperative classification of primary and metastatic liver cancer via machine
                    learning-based ultrasound radiomics. Eur Radiol 2021;31:4576-86.  DOI
               27.       Jang SI, Kim YJ, Kim EJ, et al. Diagnostic performance of endoscopic ultrasound-artificial intelligence using deep learning analysis
                    of gallbladder polypoid lesions. J Gastroenterol Hepatol 2021;36:3548-55.  DOI  PubMed
               28.       Li D, Du B, Shen Y, Ge L, Lv H. Artificial intelligence-assisted visual sensing technology under duodenoscopy of gallbladder stones.
                    J Sensors 2021;2021:1-13.  DOI
               29.       Kim T, Choi YH, Choi JH, Lee SH, Lee S, Lee IS. Gallbladder polyp classification in ultrasound images using an ensemble
                    convolutional neural network model. J Clin Med 2021;10:3585.  DOI  PubMed  PMC
               30.       Yamashita R, Bird K, Cheung PY, et al. Automated identification and measurement extraction of pancreatic cystic lesions from free-
                    text radiology reports using natural language processing. Radiol Artif Intell 2022;4:e210092.  DOI  PubMed  PMC
               31.       Chong H, Gong Y, Zhang Y, Dai Y, Sheng R, Zeng M. Radiomics on gadoxetate disodium-enhanced mri: non-invasively identifying
                    glypican 3-positive hepatocellular carcinoma and postoperative recurrence. Acad Radiol 2023;30:49-63.  DOI  PubMed
               32.       Liu Y, Liu YZ, Sun L, Zen Y, Inomoto C, Yeh MM. Subtyping of hepatocellular adenoma: a machine learning-based approach.
                    Virchows Arch 2022;481:49-61.  DOI  PubMed
               33.       Schuessler M, Saner F, Al-Rashid F, Schlosser T. Diagnostic accuracy of coronary computed tomography angiography-derived
                    fractional flow reserve (CT-FFR) in patients before liver transplantation using CT-FFR machine learning algorithm. Eur Radiol
                    2022;32:8761-8.  DOI  PubMed  PMC
               34.       Chang Y, Wu Q, Chi L, Huo H, Li Q. Adoption of combined detection technology of tumor markers via deep learning algorithm in
                    diagnosis and prognosis of gallbladder carcinoma. J Supercomput 2022;78:3955-75.  DOI
               35.       Kooragayala K, Crudeli C, Kalola A, et al. Utilization of natural language processing software to identify worrisome pancreatic
                    lesions. Ann Surg Oncol 2022;29:8513-9.  DOI
               36.       Singal AG, Mukherjee A, Elmunzer BJ, et al. Machine learning algorithms outperform conventional regression models in predicting
                    development of hepatocellular carcinoma. Am J Gastroenterol 2013;108:1723-30.  DOI  PubMed  PMC
               37.       Banerjee S, Wang DS, Kim HJ, et al. A computed tomography radiogenomic biomarker predicts microvascular invasion and clinical
                    outcomes in hepatocellular carcinoma. Hepatology 2015;62:792-800.  DOI  PubMed  PMC
               38.       Walczak S, Velanovich V. An evaluation of artificial neural networks in predicting pancreatic cancer survival. J Gastrointest Surg
                    2017;21:1606-12.  DOI  PubMed
               39.       Zhou Y, He L, Huang Y, et al. CT-based radiomics signature: a potential biomarker for preoperative prediction of early recurrence in
                    hepatocellular carcinoma. Abdom Radiol 2017;42:1695-704.  DOI  PubMed
               40.       Zheng BH, Liu LZ, Zhang ZZ, et al. Radiomics score: a potential prognostic imaging feature for postoperative survival of solitary
                    HCC patients. BMC Cancer 2018;18:1148.  DOI  PubMed  PMC
               41.       Ivanics T, Nelson W, Patel MS, et al. The toronto postliver transplantation hepatocellular carcinoma recurrence calculator: a machine
                    learning approach. Liver Transpl 2022;28:593-602.  DOI  PubMed
               42.       Sala Elarre P, Oyaga-Iriarte E, Yu KH, et al. Use of machine-learning algorithms in intensified preoperative therapy of pancreatic
                    cancer to predict individual risk of relapse. Cancers 2019;11:606.  DOI  PubMed  PMC
               43.       Marinelli B, Kang M, Martini M, et al. Combination of active transfer learning and natural language processing to improve liver
                    volumetry using surrogate metrics with deep learning. Radiol Artif Intell 2019;1:e180019.  DOI  PubMed  PMC
               44.       Nasief H, Zheng C, Schott D, et al. A machine learning based delta-radiomics process for early prediction of treatment response of
                    pancreatic cancer. NPJ Precis Oncol 2019;3:25.  DOI  PubMed  PMC
               45.       Shan QY, Hu HT, Feng ST, et al. CT-based peritumoral radiomics signatures to predict early recurrence in hepatocellular carcinoma
                    after curative tumor resection or ablation. Cancer Imaging 2019;19:11.  DOI
               46.       Chen Y, Liu Z, Mo Y, et al. Prediction of post-hepatectomy liver failure in patients with hepatocellular carcinoma based on radiomics
                    using Gd-EOB-DTPA-enhanced MRI: the liver failure model. Front Oncol 2021;11:605296.  DOI  PubMed  PMC
               47.       Han IW, Cho K, Ryu Y, et al. Risk prediction platform for pancreatic fistula after pancreatoduodenectomy using artificial
                    intelligence. World J Gastroenterol 2020;26:4453-64.  DOI  PubMed  PMC
               48.       Kambakamba P, Mannil M, Herrera P, et al. Machine learning based texture analysis predicts postoperative pancreatic fistula in
   81   82   83   84   85   86   87   88   89   90   91