Page 66 - Read Online
P. 66
Tovar et al. Art Int Surg 2023;3:14-26 https://dx.doi.org/10.20517/ais.2022.38 Page 24
Copyright
© The Author(s) 2023.
REFERENCES
1. Park W, Chawla A, O'Reilly EM. Pancreatic cancer: a review. JAMA 2021;326:851-62. DOI
2. Rahib L, Smith BD, Aizenberg R, Rosenzweig AB, Fleshman JM, Matrisian LM. Projecting cancer incidence and deaths to 2030: the
unexpected burden of thyroid, liver, and pancreas cancers in the United States. Cancer Res 2014;74:2913-21. DOI PubMed
3. National cancer institute. SEER cancer statistics review (CSR) 1975-2015. Available from: https://seer.cancer.gov/archive/csr/
1975_2015/ [Last accessed on 17 Mar 2023].
4. Kleeff J, Korc M, Apte M, et al. Pancreatic cancer. Nat Rev Dis Primers 2016;2:16022. DOI
5. Poruk KE, Firpo MA, Adler DG, Mulvihill SJ. Screening for pancreatic cancer: why, how, and who? Ann Surg 2013;257:17-26. DOI
PubMed PMC
6. Zwanenburg A, Vallières M, Abdalah MA, et al. The image biomarker standardization initiative: standardized quantitative radiomics
for high-throughput image-based phenotyping. Radiology 2020;295:328-38. DOI PubMed PMC
7. McCulloch WS, Pitts W. A logical calculus of the ideas immanent in nervous activity. Available from: https://www.cs.cmu.edu/~./
epxing/Class/10715/reading/McCulloch.and.Pitts.pdf [Last accessed on 17 Mar 2023].
8. Meyers PH, Nice CM Jr. Automated computer analysis of radiographic images. Arch Environ Health 1964;8:774-5. DOI PubMed
9. Giger ML, Doi K, MacMahon H. Image feature analysis and computer-aided diagnosis in digital radiography. 3. Automated detection
of nodules in peripheral lung fields. Med Phys 1988;15:158-66. DOI PubMed
10. Gross GW, Boone JM, Greco-Hunt V, Greenberg B. Neural networks in radiologic diagnosis. II. Interpretation of neonatal chest
radiographs. Invest Radiol 1990;25:1017-23. DOI PubMed
11. Lambin P, Rios-Velazquez E, Leijenaar R, et al. Radiomics: extracting more information from medical images using advanced feature
analysis. Eur J Cancer 2012;48:441-6. DOI PubMed PMC
12. Katzen J, Dodelzon K. A review of computer aided detection in mammography. Clin Imaging 2018;52:305-9. DOI PubMed
13. O'Connor JP, Aboagye EO, Adams JE, et al. Imaging biomarker roadmap for cancer studies. Nat Rev Clin Oncol 2017;14:169-86.
DOI PubMed PMC
14. National cancer institute. Cancer stat facts: pancreatic cancer. Available from: https://seer.cancer.gov/statfacts/html/pancreas.html
[Last accessed on 17 Mar 2023].
15. Dbouk M, Katona BW, Brand RE, et al. The multicenter cancer of pancreas screening study: impact on stage and survival. J Clin
Oncol 2022;40:3257-66. DOI PubMed PMC
16. Canto MI, Kerdsirichairat T, Yeo CJ, et al. Surgical outcomes after pancreatic resection of screening-detected lesions in individuals at
high risk for developing pancreatic cancer. J Gastrointest Surg 2020;24:1101-10. DOI PubMed PMC
17. U.S. Census Bureau. Available from: https://www.census.gov/quickfacts/fact/table/US/PST045221 [Last accessed on 17 Mar 2023].
18. Owens DK, Davidson KW, Krist AH, et al. Screening for pancreatic cancer: us preventive services task force reaffirmation
recommendation statement. JAMA 2019;322:438-44. DOI PubMed
19. Srivastava S, Koay EJ, Borowsky AD, et al. Cancer overdiagnosis: a biological challenge and clinical dilemma. Nat Rev Cancer
2019;19:349-58. DOI PubMed PMC
20. Canto MI, Almario JA, Schulick RD, et al. Risk of neoplastic progression in individuals at high risk for pancreatic cancer undergoing
long-term surveillance. Gastroenterology 2018;155:740-751.e2. DOI PubMed PMC
21. Reni M, Cereda S, Balzano G, et al. Carbohydrate antigen 19-9 change during chemotherapy for advanced pancreatic adenocarcinoma.
Cancer 2009;115:2630-9. DOI PubMed
22. Goonetilleke KS, Siriwardena AK. Systematic review of carbohydrate antigen (CA 19-9) as a biochemical marker in the diagnosis of
pancreatic cancer. Eur J Surg Oncol 2007;33:266-70. DOI PubMed
23. Kim G, Bahl M. Assessing risk of breast cancer: a review of risk prediction models. J Breast Imaging 2021;3:144-55. DOI PubMed
PMC
24. Alhazmi A, Alhazmi Y, Makrami A, et al. Application of artificial intelligence and machine learning for prediction of oral cancer risk.
J Oral Pathol Med 2021;50:444-50. DOI PubMed
25. Yeh MC, Wang YH, Yang HC, Bai KJ, Wang HH, Li YJ. Artificial intelligence-based prediction of lung cancer risk using nonimaging
electronic medical records: deep learning approach. J Med Internet Res 2021;23:e26256. DOI
26. Kakileti ST, Madhu HJ, Manjunath G, Wee L, Dekker A, Sampangi S. Personalized risk prediction for breast cancer pre-screening
using artificial intelligence and thermal radiomics. Artif Intell Med 2020;105:101854. DOI PubMed
27. Yin H, Zhang F, Yang X, et al. Research trends of artificial intelligence in pancreatic cancer: a bibliometric analysis. Front Oncol
2022;12:973999. DOI PubMed PMC
28. Jordan MI, Mitchell TM. Machine learning: trends, perspectives, and prospects. Science 2015;349:255-60. DOI
29. Schmidhuber J. Deep learning in neural networks: an overview. Neural Netw 2015;61:85-117. DOI PubMed
30. Brown T, Mann B, Ryder N, et al. Language models are few-shot learners. Available from: https://papers.nips.cc/paper/2020/hash/
1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html [Last accessed on 17 Mar 2023].
31. LeCun Y, Bengio Y, Hinton G. Deep learning. Nature 2015;521:436-44. DOI PubMed