Page 67 - Read Online
P. 67

Page 25                            Tovar et al. Art Int Surg 2023;3:14-26  https://dx.doi.org/10.20517/ais.2022.38

               32.      Alzubaidi L, Zhang J, Humaidi AJ, et al. Review of deep learning: concepts, CNN architectures, challenges, applications, future
                   directions. J Big Data 2021;8:53.  DOI  PubMed  PMC
               33.      Chari ST. Detecting early pancreatic cancer: problems and prospects. Semin Oncol 2007;34:284-94.  DOI  PubMed  PMC
               34.      Petersen GM. Familial pancreatic cancer. Semin Oncol 2016;43:548-53.  DOI  PubMed  PMC
               35.      Becker AE, Hernandez YG, Frucht H, Lucas AL. Pancreatic ductal adenocarcinoma: risk factors, screening, and early detection. World
                   J Gastroenterol 2014;20:11182-98.  DOI  PubMed  PMC
               36.      Chari ST, Maitra A, Matrisian LM, et al. Early detection initiative: a randomized controlled trial of algorithm-based screening in
                   patients with new onset hyperglycemia and diabetes for early detection of pancreatic ductal adenocarcinoma. Contemp Clin Trials
                   2022;113:106659.  DOI  PubMed  PMC
               37.      Permuth JB, Dezsi KB, Vyas S, et al. The Florida pancreas collaborative next-generation biobank: infrastructure to reduce disparities
                   and improve survival for a diverse cohort of patients with pancreatic cancer. Cancers 2021;13:809.  DOI  PubMed  PMC
               38.      Boursi B, Finkelman B, Giantonio BJ, et al. A clinical prediction model to assess risk for pancreatic cancer among patients with new-
                   onset diabetes. Gastroenterology 2017;152:840-850.e3.  DOI  PubMed  PMC
               39.      Boursi B, Finkelman B, Giantonio BJ, et al. A clinical prediction model to assess risk for pancreatic cancer among patients with
                   prediabetes. Eur J Gastroenterol Hepatol 2022;34:33-8.  DOI  PubMed  PMC
               40.      Muhammad W, Hart GR, Nartowt B, et al. Pancreatic cancer prediction through an artificial neural network. Front Artif Intell
                   2019;2:2.  DOI
               41.      Qureshi TA, Gaddam S, Wachsman AM, et al. Predicting pancreatic ductal adenocarcinoma using artificial intelligence analysis of
                   pre-diagnostic computed tomography images. Cancer Biomark 2022;33:211-7.  DOI  PubMed  PMC
               42.      Chen W, Butler RK, Zhou Y, Parker RA, Jeon CY, Wu BU. Prediction of pancreatic cancer based on imaging features in patients with
                   duct abnormalities. Pancreas 2020;49:413-9.  DOI  PubMed  PMC
               43.      Mukherjee S, Patra A, Khasawneh H, et al. Radiomics-based machine-learning models can detect pancreatic cancer on prediagnostic
                   computed tomography scans at a substantial lead time before clinical diagnosis. Gastroenterology 2022;163:1435-1446.e3.  DOI
                   PubMed
               44.      Permuth JB, Choi J, Balarunathan Y, et al. Combining radiomic features with a miRNA classifier may improve prediction of malignant
                   pathology for pancreatic intraductal papillary mucinous neoplasms. Oncotarget 2016;7:85785-97.  DOI  PubMed  PMC
               45.      Polk SL, Choi JW, McGettigan MJ, et al. Multiphase computed tomography radiomics of pancreatic intraductal papillary mucinous
                   neoplasms to predict malignancy. World J Gastroenterol 2020;26:3458-71.  DOI  PubMed  PMC
               46.      Tobaly D, Santinha J, Sartoris R, et al. CT-based radiomics analysis to predict malignancy in patients with intraductal papillary
                   mucinous neoplasm (IPMN) of the pancreas. Cancers 2020;12:3089.  DOI  PubMed  PMC
               47.      Kuwahara T, Hara K, Mizuno N, et al. Usefulness of deep learning analysis for the diagnosis of malignancy in intraductal papillary
                   mucinous neoplasms of the pancreas. Clin Transl Gastroenterol 2019;10:1-8.  DOI  PubMed  PMC
               48.      Hanania AN, Bantis LE, Feng Z, et al. Quantitative imaging to evaluate malignant potential of IPMNs. Oncotarget 2016;7:85776-84.
                   DOI  PubMed  PMC
               49.      Momeni-Boroujeni A, Yousefi E, Somma J. Computer-assisted cytologic diagnosis in pancreatic FNA: an application of neural
                   networks to image analysis. Cancer Cytopathol 2017;125:926-33.  DOI  PubMed
               50.      Chen PT, Wu T, Wang P, et al. Pancreatic cancer detection on CT scans with deep learning: a nationwide population-based study.
                   Radiology 2023;306:172-82.  DOI  PubMed
               51.      Zhang S, Zhou Y, Tang D, et al. A deep learning-based segmentation system for rapid onsite cytologic pathology evaluation of
                   pancreatic masses: a retrospective, multicenter, diagnostic study. EBioMedicine 2022;80:104022.  DOI  PubMed  PMC
               52.      Kartal E, Schmidt TSB, Molina-Montes E, et al. A faecal microbiota signature with high specificity for pancreatic cancer. Gut
                   2022;71:1359-72.  DOI  PubMed  PMC
               53.      Zaid M, Elganainy D, Dogra P, et al. Imaging-based subtypes of pancreatic ductal adenocarcinoma exhibit differential growth and
                   metabolic patterns in the pre-diagnostic period: implications for early detection. Front Oncol 2020;10:596931.  DOI  PubMed  PMC
               54.      Pannala R, Leirness JB, Bamlet WR, Basu A, Petersen GM, Chari ST. Prevalence and clinical profile of pancreatic cancer-associated
                   diabetes mellitus. Gastroenterology 2008;134:981-7.  DOI  PubMed  PMC
               55.      Sharma A, Smyrk TC, Levy MJ, Topazian MA, Chari ST. Fasting blood glucose levels provide estimate of duration and progression of
                   pancreatic cancer before diagnosis. Gastroenterology 2018;155:490-500.e2.  DOI  PubMed  PMC
               56.      Timmeren JE, Cester D, Tanadini-Lang S, Alkadhi H, Baessler B. Radiomics in medical imaging-“how-to” guide and critical
                   reflection. Insights Imaging 2020;11:91.  DOI  PubMed  PMC
               57.      Forghani R, Savadjiev P, Chatterjee A, Muthukrishnan N, Reinhold C, Forghani B. Radiomics and artificial intelligence for biomarker
                   and prediction model development in oncology. Comput Struct Biotechnol J 2019;17:995-1008.  DOI  PubMed  PMC
               58.      Kang JD, Clarke SE, Costa AF. Factors associated with missed and misinterpreted cases of pancreatic ductal adenocarcinoma. Eur
                   Radiol 2021;31:2422-32.  DOI  PubMed
               59.      Laffan TA, Horton KM, Klein AP, et al. Prevalence of unsuspected pancreatic cysts on MDCT. AJR Am J Roentgenol 2008;191:802-7.
                   DOI  PubMed  PMC
               60.      Sharib JM, Fonseca AL, Swords DS, et al. Surgical overtreatment of pancreatic intraductal papillary mucinous neoplasms: do the 2017
                   International Consensus Guidelines improve clinical decision making? Surgery 2018;164:1178-84.  DOI  PubMed
               61.      Hines OJ, Reber HA. Pancreatic surgery. Curr Opin Gastroenterol 2005;21:568-72.  DOI  PubMed
   62   63   64   65   66   67   68   69   70   71   72