Page 31 - Read Online
P. 31

Body et al. Art Int Surg 2022;2:186-94  https://dx.doi.org/10.20517/ais.2022.28     Page 194

                   pancreaticoduodenectomy across low and high volume centers. Ann Surg 2019;270:1147-55.  DOI  PubMed
               43.      Ceccarelli G, Andolfi E, Fontani A, Calise F, Rocca A, Giuliani A. Robot-assisted liver surgery in a general surgery unit with a
                   “Referral Centre Hub&Spoke Learning Program”. Early outcomes after our first 70 consecutive patients. Minerva Chir 2018;73:460-8.
                   DOI  PubMed
               44.      Gall TMH, Alrawashdeh W, Soomro N, White S, Jiao LR. Shortening surgical training through robotics: randomized clinical trial of
                   laparoscopic versus robotic surgical learning curves. BJS Open 2020;4:1100-8.  DOI  PubMed  PMC
               45.      Zhang  T,  Zhao  ZM,  Gao  YX,  Lau  WY,  Liu  R.  The  learning  curve  for  a  surgeon  in  robot-assisted  laparoscopic
                   pancreaticoduodenectomy: a retrospective study in a high-volume pancreatic center. Surg Endosc 2019;33:2927-33.  DOI  PubMed
               46.      Lu C, Jin W, Mou YP, et al. Analysis of learning curve for laparoscopic pancreaticoduodenectomy. J Vis Surg 2016;2:145.  DOI
                   PubMed  PMC
               47.      Gall TMH, Malhotra G, Elliott JA, Conneely JB, Fong Y, Jiao LR. The Atlantic divide: contrasting surgical robotics training in the
                   USA, UK and Ireland. J Robot Surg 2022.  DOI  PubMed
               48.      Takagi K, Umeda Y, Yoshida R, et al. Surgical training model and safe implementation of robotic pancreatoduodenectomy in Japan: a
                   technical note. World J Surg Oncol 2021;19:55.  DOI  PubMed  PMC
               49.      Rice MK, Hodges JC, Bellon J, et al. Association of mentorship and a formal robotic proficiency skills curriculum with subsequent
                   generations’ learning curve and safety for robotic pancreaticoduodenectomy. JAMA Surg 2020;155:607-15.  DOI  PubMed  PMC
               50.      Yamashita R, Nishio M, Do RKG, Togashi K. Convolutional neural networks: an overview and application in radiology. Insights
                   Imaging 2018;9:611-29.  DOI  PubMed  PMC
               51.      Malik P, Pathania M, Rathaur VK. Overview of artificial intelligence in medicine. J Family Med Prim Care 2019;8:2328.  DOI
                   PubMed  PMC
               52.      Deo RC. Machine learning in medicine. Circulation 2015;132:1920-30.  DOI  PubMed  PMC
               53.      Mascagni P, Alapatt D, Urade T, et al. A computer vision platform to automatically locate critical events in surgical videos:
                   documenting safety in laparoscopic cholecystectomy. Ann Surg 2021;274:e93-5.  DOI  PubMed
               54.      Malpani A, Vedula SS, Lin HC, Hager GD, Taylor RH. Effect of real-time virtual reality-based teaching cues on learning needle
                   passing for robot-assisted minimally invasive surgery: a randomized controlled trial. Int J Comput Assist Radiol Surg 2020;15:1187-
                   94.  DOI  PubMed
               55.      Twinanda AP, Shehata S, Mutter D, Marescaux J, de Mathelin M, Padoy N. EndoNet: a deep architecture for recognition tasks on
                   laparoscopic videos. IEEE Trans Med Imaging 2017;36:86-97.  DOI  PubMed
               56.      Jin Y, Dou Q, Chen H, et al. SV-RCNet: workflow recognition from surgical videos using recurrent convolutional network. IEEE
                   Trans Med Imaging 2018;37:1114-26.  DOI  PubMed
               57.      Hashimoto DA, Rosman G, Witkowski ER, et al. Computer vision analysis of intraoperative video: automated recognition of operative
                   steps in laparoscopic sleeve gastrectomy. Ann Surg 2019;270:414-21.  DOI  PubMed  PMC
               58.      Morita S, Tabuchi H, Masumoto H, Yamauchi T, Kamiura N. Real-time extraction of important surgical phases in cataract surgery
                   videos. Sci Rep 2019;9:16590.  DOI  PubMed  PMC
               59.      Kitaguchi D, Takeshita N, Matsuzaki H, et al. Real-time automatic surgical phase recognition in laparoscopic sigmoidectomy using the
                   convolutional neural network-based deep learning approach. Surg Endosc 2020;34:4924-31.  DOI  PubMed
               60.      Ward TM, Mascagni P, Ban Y, et al. Computer vision in surgery. Surgery 2021;169:1253-6.  DOI  PubMed
               61.      Kitaguchi D, Takeshita N, Matsuzaki H, et al. Automated laparoscopic colorectal surgery workflow recognition using artificial
                   intelligence: experimental research. Int J Surg 2020;79:88-94.  DOI  PubMed
               62.      Yamazaki Y, Kanaji S, Matsuda T, et al. Automated surgical instrument detection from laparoscopic gastrectomy video images using
                   an open source convolutional neural network platform. J Am Coll Surg 2020;230:725-732.e1.  DOI  PubMed
               63.      Lee D, Yu HW, Kwon H, Kong HJ, Lee KE, Kim HC. Evaluation of surgical skills during robotic surgery by deep learning-based
                   multiple surgical instrument tracking in training and actual operations. J Clin Med 2020;9:1964.  DOI  PubMed  PMC
               64.      Khalid S, Goldenberg M, Grantcharov T, Taati B, Rudzicz F. Evaluation of deep learning models for identifying surgical actions and
                   measuring performance. JAMA Netw Open 2020;3:e201664.  DOI  PubMed
               65.      Luongo F, Hakim R, Nguyen JH, Anandkumar A, Hung AJ. Deep learning-based computer vision to recognize and classify suturing
                   gestures in robot-assisted surgery. Surgery 2021;169:1240-4.  DOI  PubMed  PMC
               66.      Madani A, Namazi B, Altieri MS, et al. Artificial intelligence for intraoperative guidance: using semantic segmentation to identify
                   surgical anatomy during laparoscopic cholecystectomy. Ann Surg 2022;276:363-9.  DOI  PubMed  PMC
               67.      Mascagni P, Vardazaryan A, Alapatt D, et al. Artificial intelligence for surgical safety: automatic assessment of the critical view of
                   safety in laparoscopic cholecystectomy using deep learning. Ann Surg 2022;275:955-61.  DOI  PubMed
               68.      Stulberg JJ, Huang R, Kreutzer L, et al. Association between surgeon technical skills and patient outcomes. JAMA Surg 2020;155:960-
                   8.  DOI  PubMed  PMC
               69.      Hung AJ, Chen J, Che Z, et al. Utilizing machine learning and automated performance metrics to evaluate robot-assisted radical
                   prostatectomy performance and predict outcomes. J Endourol 2018;32:438-44.  DOI  PubMed
               70.      Jarc AM, Curet MJ. Viewpoint matters: objective performance metrics for surgeon endoscope control during robot-assisted surgery.
                   Surg Endosc 2017;31:1192-202.  DOI  PubMed  PMC
   26   27   28   29   30   31   32   33   34   35   36