Page 163 - Read Online
P. 163

Page 230                         Grewal et al. Art Int Surg 2023;3:217-32  https://dx.doi.org/10.20517/ais.2023.28

               76.       Nasief H, Hall W, Zheng C, et al. Improving treatment response prediction for chemoradiation therapy of pancreatic cancer using a
                    combination of delta-radiomics and the clinical biomarker CA19-9. Front Oncol 2019;9:1464.  DOI  PubMed  PMC
               77.       Nasief H, Zheng C, Schott D, et al. A machine learning based delta-radiomics process for early prediction of treatment response of
                    pancreatic cancer. NPJ Precis Oncol 2019;3:25.  DOI  PubMed  PMC
               78.       Simpson G, Spieler B, Dogan N, et al. Predictive value of 0.35 T magnetic resonance imaging radiomic features in stereotactic
                    ablative body radiotherapy of pancreatic cancer: a pilot study. Med Phys 2020;47:3682-90.  DOI
               79.       Yue Y, Osipov A, Fraass B, et al. Identifying prognostic intratumor heterogeneity using pre- and post-radiotherapy 18F-FDG PET
                    images for pancreatic cancer patients. J Gastrointest Oncol 2017;8:127-38.  DOI  PubMed  PMC
               80.       Li X, Wan Y, Lou J, et al. Preoperative recurrence prediction in pancreatic ductal adenocarcinoma after radical resection using
                    radiomics of diagnostic computed tomography. EClinicalMedicine 2022;43:101215.  DOI  PubMed  PMC
               81.       Parr E, Du Q, Zhang C, et al. Radiomics-based outcome prediction for pancreatic cancer following stereotactic body radiotherapy.
                    Cancers 2020;12:1051.  DOI  PubMed  PMC
               82.       Tang TY, Li X, Zhang Q, et al. Development of a novel multiparametric MRI radiomic nomogram for preoperative evaluation of
                    early recurrence in resectable pancreatic cancer. J Magn Reson Imaging 2020;52:231-45.  DOI
                                                                                 18
               83.       Wei M, Gu B, Song S, et al. A novel validated recurrence stratification system based on  F-FDG PET/CT radiomics to guide
                    surveillance after resection of pancreatic cancer. Front Oncol 2021;11:650266.  DOI  PubMed  PMC
               84.       Marrero JA, Kulik LM, Sirlin CB, et al. Diagnosis, staging, and management of hepatocellular carcinoma: 2018 practice guidance by
                    the American Association for the study of liver diseases. Hepatology 2018;68:723-50.  DOI
               85.       Joo I, Lee JM, Yoon JH. Imaging diagnosis of intrahepatic and perihilar cholangiocarcinoma: recent advances and challenges.
                    Radiology 2018;288:7-13.  DOI  PubMed
               86.       Potretzke TA, Tan BR, Doyle MB, Brunt EM, Heiken JP, Fowler KJ. Imaging features of biphenotypic primary liver carcinoma
                    (hepatocholangiocarcinoma) and the potential to mimic hepatocellular carcinoma: LI-RADS analysis of CT and MRI features in 61
                    cases. AJR Am J Roentgenol 2016;207:25-31.  DOI  PubMed
               87.       Gatos I, Tsantis S, Karamesini M, et al. Focal liver lesions segmentation and classification in nonenhanced T2-weighted MRI. Med
                    Phys 2017;44:3695-705.  DOI
               88.       Jansen MJA, Kuijf HJ, Veldhuis WB, Wessels FJ, Viergever MA, Pluim JPW. Automatic classification of focal liver lesions based on
                    MRI and risk factors. PLoS One 2019;14:e0217053.  DOI  PubMed  PMC
               89.       Li Z, Mao Y, Huang W, et al. Texture-based classification of different single liver lesion based on SPAIR T2W MRI images. BMC
                    Med Imaging 2017;17:42.  DOI  PubMed  PMC
               90.       Nie P, Yang G, Guo J, et al. A CT-based radiomics nomogram for differentiation of focal nodular hyperplasia from hepatocellular
                    carcinoma in the non-cirrhotic liver. Cancer Imaging 2020;20:20.  DOI  PubMed  PMC
               91.       Wu J, Liu A, Cui J, Chen A, Song Q, Xie L. Radiomics-based classification of hepatocellular carcinoma and hepatic haemangioma on
                    precontrast magnetic resonance images. BMC Med Imaging 2019;19:23.  DOI  PubMed  PMC
               92.       Liu X, Khalvati F, Namdar K, et al. Can machine learning radiomics provide pre-operative differentiation of combined hepatocellular
                    cholangiocarcinoma from hepatocellular carcinoma and cholangiocarcinoma to inform optimal treatment planning? Eur Radiol
                    2021;31:244-55.  DOI
               93.       Trivizakis E, Manikis GC, Nikiforaki K, et al. Extending 2-D convolutional neural networks to 3-D for advancing deep learning
                    cancer classification with application to MRI liver tumor differentiation. IEEE J Biomed Health Inform 2019;23:923-30.  DOI
               94.       Canellas R, Mehrkhani F, Patino M, Kambadakone A, Sahani D. Characterization of portal vein thrombosis (neoplastic versus bland)
                    on CT images using software-based texture analysis and thrombus density (Hounsfield Units). AJR Am J Roentgenol 2016;207:W81-
                    7.  DOI
               95.       Santambrogio R, Barabino M, D’Alessandro V, et al. Micronvasive behaviour of single small hepatocellular carcinoma: which
                    treatment? Updates Surg 2021;73:1359-69.  DOI
               96.       He M, Zhang P, Ma X, He B, Fang C, Jia F. Radiomic feature-based predictive model for microvascular invasion in patients with
                    hepatocellular carcinoma. Front Oncol 2020;10:574228.  DOI  PubMed  PMC
               97.       Ni M, Zhou X, Lv Q, et al. Radiomics models for diagnosing microvascular invasion in hepatocellular carcinoma: which model is the
                    best model? Cancer Imaging 2019;19:60.  DOI  PubMed  PMC
               98.       Qu C, Wang Q, Li C, et al. A radiomics model based on Gd-EOB-DTPA-enhanced MRI for the prediction of microvascular invasion
                    in solitary hepatocellular carcinoma ≤ 5 cm. Front Oncol 2022;12:831795.  DOI  PubMed  PMC
               99.       Zhang W, Yang R, Liang F, et al. Prediction of microvascular invasion in hepatocellular carcinoma with a multi-disciplinary team-
                    like radiomics fusion model on dynamic contrast-enhanced computed tomography. Front Oncol 2021;11:660629.  DOI  PubMed
                    PMC
               100.      Chu H, Liu Z, Liang W, et al. Radiomics using CT images for preoperative prediction of futile resection in intrahepatic
                    cholangiocarcinoma. Eur Radiol 2021;31:2368-76.  DOI
               101.      Limkin EJ, Sun R, Dercle L, et al. Promises and challenges for the implementation of computational medical imaging (radiomics) in
                    oncology. Ann Oncol 2017;28:1191-206.  DOI
               102.      Lopez A, Harada K, Mizrak Kaya D, Dong X, Song S, Ajani JA. Liquid biopsies in gastrointestinal malignancies: when is the big
                    day? Expert Rev Anticancer Ther 2018;18:19-38.  DOI
               103.      Dalal V, Carmicheal J, Dhaliwal A, Jain M, Kaur S, Batra SK. Radiomics in stratification of pancreatic cystic lesions: machine
   158   159   160   161   162   163   164   165   166   167   168