Page 162 - Read Online
P. 162
Grewal et al. Art Int Surg 2023;3:217-32 https://dx.doi.org/10.20517/ais.2023.28 Page 229
46. Tobaly D, Santinha J, Sartoris R, et al. CT-based radiomics analysis to predict malignancy in patients with intraductal papillary
mucinous neoplasm (IPMN) of the pancreas. Cancers 2020;12:3089. DOI PubMed PMC
47. Polk SL, Choi JW, McGettigan MJ, et al. Multiphase computed tomography radiomics of pancreatic intraductal papillary mucinous
neoplasms to predict malignancy. World J Gastroenterol 2020;26:3458-71. DOI PubMed PMC
48. Hong SB, Lee SS, Kim JH, et al. Pancreatic cancer CT: prediction of resectability according to NCCN criteria. Radiology
2018;289:710-8. DOI
49. Zins M, Matos C, Cassinotto C. Pancreatic adenocarcinoma staging in the era of preoperative chemotherapy and radiation therapy.
Radiology 2018;287:374-90. DOI PubMed
50. Bian Y, Jiang H, Ma C, et al. Performance of CT-based radiomics in diagnosis of superior mesenteric vein resection margin in
patients with pancreatic head cancer. Abdom Radiol 2020;45:759-73. DOI
51. Chen F, Zhou Y, Qi X, et al. Radiomics-assisted presurgical prediction for surgical portal vein-superior mesenteric vein invasion in
pancreatic ductal adenocarcinoma. Front Oncol 2020;10:523543. DOI PubMed PMC
52. Rigiroli F, Hoye J, Lerebours R, et al. CT radiomic features of superior mesenteric artery involvement in pancreatic ductal
adenocarcinoma: a pilot study. Radiology 2021;301:610-22. DOI PubMed PMC
53. Schlanger D, Graur F, Popa C, Moiș E, Al Hajjar N. The role of artificial intelligence in pancreatic surgery: a systematic review.
Updates Surg 2022;74:417-29. DOI PubMed
54. Kambakamba P, Mannil M, Herrera PE, et al. The potential of machine learning to predict postoperative pancreatic fistula based on
preoperative, non-contrast-enhanced CT: a proof-of-principle study. Surgery 2020;167:448-54. DOI
55. Skawran SM, Kambakamba P, Baessler B, et al. Can magnetic resonance imaging radiomics of the pancreas predict postoperative
pancreatic fistula? Eur J Radiol 2021;140:109733. DOI
56. Capretti G, Bonifacio C, De Palma C, et al. A machine learning risk model based on preoperative computed tomography scan to
predict postoperative outcomes after pancreatoduodenectomy. Updates Surg 2022;74:235-43. DOI
57. Bian Y, Jiang H, Ma C, et al. CT-based radiomics score for distinguishing between grade 1 and grade 2 nonfunctioning pancreatic
neuroendocrine tumors. AJR Am J Roentgenol 2020;215:852-63. DOI
58. Bian Y, Li J, Cao K, et al. Magnetic resonance imaging radiomic analysis can preoperatively predict G1 and G2/3 grades in patients
with NF-pNETs. Abdom Radiol 2021;46:667-80. DOI
59. Bian Y, Zhao Z, Jiang H, et al. Noncontrast radiomics approach for predicting grades of nonfunctional pancreatic neuroendocrine
tumors. J Magn Reson Imaging 2020;52:1124-36. DOI PubMed PMC
60. Choi TW, Kim JH, Yu MH, Park SJ, Han JK. Pancreatic neuroendocrine tumor: prediction of the tumor grade using CT findings and
computerized texture analysis. Acta Radiol 2018;59:383-92. DOI PubMed
61. Liang W, Yang P, Huang R, et al. A combined nomogram model to preoperatively predict histologic grade in pancreatic
neuroendocrine tumors. Clin Cancer Res 2019;25:584-94. DOI
62. Ren S, Zhao R, Cui W, et al. Computed tomography-based radiomics signature for the preoperative differentiation of pancreatic
adenosquamous carcinoma from pancreatic ductal adenocarcinoma. Front Oncol 2020;10:1618. DOI PubMed PMC
18
63. Xing H, Hao Z, Zhu W, et al. Preoperative prediction of pathological grade in pancreatic ductal adenocarcinoma based on F-FDG
PET/CT radiomics. EJNMMI Res 2021;11:19. DOI PubMed
64. Bian Y, Guo S, Jiang H, et al. Relationship between radiomics and risk of lymph node metastasis in pancreatic ductal
adenocarcinoma. Pancreas 2019;48:1195-203. DOI PubMed PMC
65. Gao J, Han F, Jin Y, Wang X, Zhang J. A radiomics nomogram for the preoperative prediction of lymph node metastasis in
pancreatic ductal adenocarcinoma. Front Oncol 2020;10:1654. DOI PubMed PMC
66. Li K, Yao Q, Xiao J, et al. Contrast-enhanced CT radiomics for predicting lymph node metastasis in pancreatic ductal
adenocarcinoma: a pilot study. Cancer Imaging 2020;20:12. DOI PubMed PMC
67. Liu P, Gu Q, Hu X, et al. Applying a radiomics-based strategy to preoperatively predict lymph node metastasis in the resectable
pancreatic ductal adenocarcinoma. J Xray Sci Technol 2020;28:1113-21. DOI
68. Lo Gullo R, Daimiel I, Morris EA, Pinker K. Combining molecular and imaging metrics in cancer: radiogenomics. Insights
Imaging 2020;11:1. DOI PubMed PMC
69. Attiyeh MA, Chakraborty J, McIntyre CA, et al. CT radiomics associations with genotype and stromal content in pancreatic ductal
adenocarcinoma. Abdom Radiol 2019;44:3148-57. DOI PubMed PMC
70. Iwatate Y, Hoshino I, Yokota H, et al. Radiogenomics for predicting p53 status, PD-L1 expression, and prognosis with machine
learning in pancreatic cancer. Br J Cancer 2020;123:1253-61. DOI PubMed PMC
71. Kaissis GA, Ziegelmayer S, Lohöfer FK, et al. Image-based molecular phenotyping of pancreatic ductal adenocarcinoma. J Clin Med
2020;9:724. DOI PubMed PMC
18
72. Lim CH, Cho YS, Choi JY, et al. Imaging phenotype using F-fluorodeoxyglucose positron emission tomography-based radiomics
and genetic alterations of pancreatic ductal adenocarcinoma. Eur J Nucl Med Mol Imaging 2020;47:2113-22. DOI
73. Nardone V, Reginelli A, Grassi R, et al. Delta radiomics: a systematic review. Radiol Med 2021;126:1571-83. DOI
74. Chen X, Oshima K, Schott D, et al. Assessment of treatment response during chemoradiation therapy for pancreatic cancer based on
quantitative radiomic analysis of daily CTs: An exploratory study. PLoS One 2017;12:e0178961. DOI PubMed PMC
75. Cusumano D, Boldrini L, Yadav P, et al. Delta radiomics analysis for local control prediction in pancreatic cancer patients treated
using magnetic resonance guided radiotherapy. Diagnostics 2021;11:72. DOI PubMed PMC