Page 162 - Read Online
P. 162

Grewal et al. Art Int Surg 2023;3:217-32  https://dx.doi.org/10.20517/ais.2023.28   Page 229

               46.       Tobaly D, Santinha J, Sartoris R, et al. CT-based radiomics analysis to predict malignancy in patients with intraductal papillary
                    mucinous neoplasm (IPMN) of the pancreas. Cancers 2020;12:3089.  DOI  PubMed  PMC
               47.       Polk SL, Choi JW, McGettigan MJ, et al. Multiphase computed tomography radiomics of pancreatic intraductal papillary mucinous
                    neoplasms to predict malignancy. World J Gastroenterol 2020;26:3458-71.  DOI  PubMed  PMC
               48.       Hong SB, Lee SS, Kim JH, et al. Pancreatic cancer CT: prediction of resectability according to NCCN criteria. Radiology
                    2018;289:710-8.  DOI
               49.       Zins M, Matos C, Cassinotto C. Pancreatic adenocarcinoma staging in the era of preoperative chemotherapy and radiation therapy.
                    Radiology 2018;287:374-90.  DOI  PubMed
               50.       Bian Y, Jiang H, Ma C, et al. Performance of CT-based radiomics in diagnosis of superior mesenteric vein resection margin in
                    patients with pancreatic head cancer. Abdom Radiol 2020;45:759-73.  DOI
               51.       Chen F, Zhou Y, Qi X, et al. Radiomics-assisted presurgical prediction for surgical portal vein-superior mesenteric vein invasion in
                    pancreatic ductal adenocarcinoma. Front Oncol 2020;10:523543.  DOI  PubMed  PMC
               52.       Rigiroli F, Hoye J, Lerebours R, et al. CT radiomic features of superior mesenteric artery involvement in pancreatic ductal
                    adenocarcinoma: a pilot study. Radiology 2021;301:610-22.  DOI  PubMed  PMC
               53.       Schlanger D, Graur F, Popa C, Moiș E, Al Hajjar N. The role of artificial intelligence in pancreatic surgery: a systematic review.
                    Updates Surg 2022;74:417-29.  DOI  PubMed
               54.       Kambakamba P, Mannil M, Herrera PE, et al. The potential of machine learning to predict postoperative pancreatic fistula based on
                    preoperative, non-contrast-enhanced CT: a proof-of-principle study. Surgery 2020;167:448-54.  DOI
               55.       Skawran SM, Kambakamba P, Baessler B, et al. Can magnetic resonance imaging radiomics of the pancreas predict postoperative
                    pancreatic fistula? Eur J Radiol 2021;140:109733.  DOI
               56.       Capretti G, Bonifacio C, De Palma C, et al. A machine learning risk model based on preoperative computed tomography scan to
                    predict postoperative outcomes after pancreatoduodenectomy. Updates Surg 2022;74:235-43.  DOI
               57.       Bian Y, Jiang H, Ma C, et al. CT-based radiomics score for distinguishing between grade 1 and grade 2 nonfunctioning pancreatic
                    neuroendocrine tumors. AJR Am J Roentgenol 2020;215:852-63.  DOI
               58.       Bian Y, Li J, Cao K, et al. Magnetic resonance imaging radiomic analysis can preoperatively predict G1 and G2/3 grades in patients
                    with NF-pNETs. Abdom Radiol 2021;46:667-80.  DOI
               59.       Bian Y, Zhao Z, Jiang H, et al. Noncontrast radiomics approach for predicting grades of nonfunctional pancreatic neuroendocrine
                    tumors. J Magn Reson Imaging 2020;52:1124-36.  DOI  PubMed  PMC
               60.       Choi TW, Kim JH, Yu MH, Park SJ, Han JK. Pancreatic neuroendocrine tumor: prediction of the tumor grade using CT findings and
                    computerized texture analysis. Acta Radiol 2018;59:383-92.  DOI  PubMed
               61.       Liang W, Yang P, Huang R, et al. A combined nomogram model to preoperatively predict histologic grade in pancreatic
                    neuroendocrine tumors. Clin Cancer Res 2019;25:584-94.  DOI
               62.       Ren S, Zhao R, Cui W, et al. Computed tomography-based radiomics signature for the preoperative differentiation of pancreatic
                    adenosquamous carcinoma from pancreatic ductal adenocarcinoma. Front Oncol 2020;10:1618.  DOI  PubMed  PMC
                                                                                                    18
               63.       Xing H, Hao Z, Zhu W, et al. Preoperative prediction of pathological grade in pancreatic ductal adenocarcinoma based on  F-FDG
                    PET/CT radiomics. EJNMMI Res 2021;11:19.  DOI  PubMed
               64.       Bian  Y,  Guo  S,  Jiang  H,  et  al.  Relationship  between  radiomics  and  risk  of  lymph  node  metastasis  in  pancreatic  ductal
                    adenocarcinoma. Pancreas 2019;48:1195-203.  DOI  PubMed  PMC
               65.       Gao J, Han F, Jin Y, Wang X, Zhang J. A radiomics nomogram for the preoperative prediction of lymph node metastasis in
                    pancreatic ductal adenocarcinoma. Front Oncol 2020;10:1654.  DOI  PubMed  PMC
               66.       Li  K,  Yao  Q,  Xiao  J,  et  al.  Contrast-enhanced  CT  radiomics  for  predicting  lymph  node  metastasis  in  pancreatic  ductal
                    adenocarcinoma: a pilot study. Cancer Imaging 2020;20:12.  DOI  PubMed  PMC
               67.       Liu P, Gu Q, Hu X, et al. Applying a radiomics-based strategy to preoperatively predict lymph node metastasis in the resectable
                    pancreatic ductal adenocarcinoma. J Xray Sci Technol 2020;28:1113-21.  DOI
               68.       Lo Gullo R, Daimiel I, Morris EA, Pinker K. Combining molecular and imaging metrics in cancer: radiogenomics. Insights
                    Imaging 2020;11:1.  DOI  PubMed  PMC
               69.       Attiyeh MA, Chakraborty J, McIntyre CA, et al. CT radiomics associations with genotype and stromal content in pancreatic ductal
                    adenocarcinoma. Abdom Radiol 2019;44:3148-57.  DOI  PubMed  PMC
               70.       Iwatate Y, Hoshino I, Yokota H, et al. Radiogenomics for predicting p53 status, PD-L1 expression, and prognosis with machine
                    learning in pancreatic cancer. Br J Cancer 2020;123:1253-61.  DOI  PubMed  PMC
               71.       Kaissis GA, Ziegelmayer S, Lohöfer FK, et al. Image-based molecular phenotyping of pancreatic ductal adenocarcinoma. J Clin Med
                    2020;9:724.  DOI  PubMed  PMC
                                                           18
               72.       Lim CH, Cho YS, Choi JY, et al. Imaging phenotype using  F-fluorodeoxyglucose positron emission tomography-based radiomics
                    and genetic alterations of pancreatic ductal adenocarcinoma. Eur J Nucl Med Mol Imaging 2020;47:2113-22.  DOI
               73.       Nardone V, Reginelli A, Grassi R, et al. Delta radiomics: a systematic review. Radiol Med 2021;126:1571-83.  DOI
               74.       Chen X, Oshima K, Schott D, et al. Assessment of treatment response during chemoradiation therapy for pancreatic cancer based on
                    quantitative radiomic analysis of daily CTs: An exploratory study. PLoS One 2017;12:e0178961.  DOI  PubMed  PMC
               75.       Cusumano D, Boldrini L, Yadav P, et al. Delta radiomics analysis for local control prediction in pancreatic cancer patients treated
                    using magnetic resonance guided radiotherapy. Diagnostics 2021;11:72.  DOI  PubMed  PMC
   157   158   159   160   161   162   163   164   165   166   167