Page 54 - Read Online
P. 54

Mu et al. Microstructures 2023;3:2023030  https://dx.doi.org/10.20517/microstructures.2023.05  Page 15 of 21

                    [Last accessed on 5 July 2023].
               14.       Takadama H, Kim HM, Kokubo T, Nakamura T. TEM-EDX study of mechanism of bonelike apatite formation on bioactive titanium
                    metal in simulated body fluid. J Biomed Mater Res A 2001;57:441-448.  PubMed
               15.       Baino F, Yamaguchi S. The use of simulated body fluid (SBF) for assessing materials bioactivity in the context of tissue engineering:
                    review and challenges. Biomimetics 2020;5:57.  DOI  PubMed  PMC
               16.       Suchý T, Bartoš M, Sedláček R, et al. Various simulated body fluids lead to significant differences in collagen tissue engineering
                    scaffolds. Materials 2021;14:4388.  DOI  PubMed  PMC
               17.       Bonfiglio R, Scimeca M, Urbano N, Bonanno E, Schillaci O. Breast microcalcifications: biological and diagnostic perspectives.
                    Future Oncol 2018;14:3097-9.  DOI  PubMed
               18.       Busing CM, Keppler U, Menges V. Differences in microcalcification in breast tumors. Virchows Arch A 1981;393:307-13.  DOI
               19.       Barman I, Dingari NC, Saha A, et al. Application of Raman spectroscopy to identify microcalcifications and underlying breast lesions
                    at stereotactic core needle biopsy. Cancer Res 2013;73:3206-15.  DOI  PubMed  PMC
               20.       Tsolaki E, Bertazzo S. Pathological mineralization: the potential of mineralomics. Materials 2019;12:3126.  DOI  PubMed  PMC
               21.       Tan ACS, Pilgrim MG, Fearn S, et al. Calcified nodules in retinal drusen are associated with disease progression in age-related
                    macular degeneration. Sci Transl Med 2018;10:eaat4544.  DOI  PubMed
               22.       Kirsch T. Determinants of pathological mineralization. Curr Opin Rheumatol 2006;18:174-80.  DOI  PubMed
               23.       Reznikov N, Steele JAM, Fratzl P, Stevens MM. A materials science vision of extracellular matrix mineralization. Nat Rev Mater
                    2016;1:16041.  DOI
               24.       Luo G, Ducy P, McKee MD, et al. Spontaneous calcification of arteries and cartilage in mice lacking matrix GLA protein. Nature
                    1997;386:78-81.  DOI
               25.       Yagami K, Suh JY, Enomoto-Iwamoto M, et al. Matrix GLA protein is a developmental regulator of chondrocyte mineralization and,
                    when constitutively expressed, blocks endochondral and intramembranous ossification in the limb. J Cell Biol 1999;147:1097-108.
                    DOI  PubMed  PMC
               26.       Yuan FL, Xu RS, Ye JX, et al. Apoptotic bodies from endplate chondrocytes enhance the oxidative stress-induced mineralization by
                    regulating PPi metabolism. J Cell Mol Med 2019;23:3665-75.  DOI  PubMed  PMC
               27.       Wu LN, Genge BR, Dunkelberger DG, LeGeros RZ, Concannon B, Wuthier RE. Physicochemical characterization of the
                    nucleational core of matrix vesicles. J Biol Chem 1997;272:4404-11.  DOI  PubMed
               28.       Sekaran S, Vimalraj S, Thangavelu L. The physiological and pathological role of tissue nonspecific alkaline phosphatase beyond
                    mineralization. Biomolecules 2021;11:1564.  DOI  PubMed  PMC
               29.       Franklin BS, Mangan MS, Latz E. Crystal formation in inflammation. Annu Rev Immunol 2016;34:173-202.  DOI  PubMed
               30.       Poloni LN, Ward MD. The materials science of pathological crystals. Chem Mater 2014;26:477-95.  DOI
               31.       Bazin D, Daudon M, Combes C, Rey C. Characterization and some physicochemical aspects of pathological microcalcifications.
                    Chem Rev 2012;112:5092-120.  DOI  PubMed
               32.       Ralph D, van de Wetering K, Uitto J, Li Q. Inorganic pyrophosphate deficiency syndromes and potential treatments for pathologic
                    tissue calcification. Am J Pathol 2022;192:762-70.  DOI  PubMed  PMC
               33.       Singh A, Tandon S, Tandon C. An update on vascular calcification and potential therapeutics. Mol Biol Rep 2021;48:887-96.  DOI
                    PubMed
               34.       Fuery MA, Liang L, Kaplan FS, Mohler ER. Vascular ossification: pathology, mechanisms, and clinical implications. Bone
                    2018;109:28-34.  DOI  PubMed
               35.       Durham AL, Speer MY, Scatena M, Giachelli CM, Shanahan CM. Role of smooth muscle cells in vascular calcification: implications
                    in atherosclerosis and arterial stiffness. Cardiovasc Res 2018;114:590-600.  DOI  PubMed  PMC
               36.       Vidavsky N, Kunitake JAMR, Estroff LA. Multiple pathways for pathological calcification in the human body. Adv Healthc Mater
                    2021;10:e2001271.  DOI  PubMed  PMC
               37.       Cazalbou S, Combes C, Eichert D, Rey C. Adaptative physico-chemistry of bio-related calcium phosphates. J Mater Chem
                    2004;14:2148.  DOI
               38.       Zipkin I. The inorganic composition of bones and teeth. In: Schraer H, editor. Biological calcification: cellular and molecular aspects.
                    Boston: Springer; 1970. pp. 69-103.  DOI
               39.       Elsharkawy S, Mata A. Hierarchical biomineralization: from nature’s designs to synthetic materials for regenerative medicine and
                    dentistry. Adv Healthc Mater 2018;7:e1800178.  DOI  PubMed
               40.       Abou Neel EA, Aljabo A, Strange A, et al. Demineralization-remineralization dynamics in teeth and bone. Int J Nanomed
                    2016;11:4743-63.  DOI  PubMed  PMC
               41.       Eanes ED, Gillessen IH, Posner AS. Intermediate states in the precipitation of hydroxyapatite. Nature 1965;208:365-7.  DOI
                    PubMed
               42.       Habraken W, Habibovic P, Epple M, Bohner M. Calcium phosphates in biomedical applications: materials for the future? Mater
                    Today 2016;19:69-87.  DOI
               43.       Beniash E, Metzler RA, Lam RS, Gilbert PU. Transient amorphous calcium phosphate in forming enamel.  J Struct Biol
                    2009;166:133-43.  DOI  PubMed  PMC
               44.       Mahamid J, Aichmayer B, Shimoni E, et al. Mapping amorphous calcium phosphate transformation into crystalline mineral from the
                    cell to the bone in zebrafish fin rays. Proc Natl Acad Sci USA 2010;107:6316-21.  DOI  PubMed  PMC
   49   50   51   52   53   54   55   56   57   58   59