Page 56 - Read Online
P. 56

Mu et al. Microstructures 2023;3:2023030  https://dx.doi.org/10.20517/microstructures.2023.05  Page 17 of 21

               78.       White SN, Luo W, Paine ML, Fong H, Sarikaya M, Snead ML. Biological organization of hydroxyapatite crystallites into a fibrous
                    continuum toughens and controls anisotropy in human enamel. J Dent Res 2001;80:321-6.  DOI  PubMed
               79.       Giacaman R, Perez V, Carrera C. Mineralization processes in hard tissues. In: Biomineralization and biomaterials. Amsterdam, The
                    Netherlands: Elsevier; 2016. pp. 147-85.  DOI
               80.       Wang L, Guan X, Du C, Moradian-Oldak J, Nancollas GH. Amelogenin promotes the formation of elongated apatite microstructures
                    in a controlled crystallization system. J Phys Chem C Nanomater Interfaces 2007;111:6398-404.  DOI  PubMed  PMC
               81.       Robinson C, Kirkham J, Brookes SJ, Bonass WA, Shore RC. The chemistry of enamel development. Int J Dev Biol 1995;39:145-52.
                    PubMed
               82.       Smith CE. Cellular and chemical events during enamel maturation. Crit Rev Oral Biol Med 1998;9:128-61.  DOI  PubMed
               83.       Moradian-Oldak J. Protein-mediated enamel mineralization. Front Biosci 2012;17:1996-2023.  DOI  PubMed  PMC
               84.       Yamamoto T, Hasegawa T, Yamamoto T, Hongo H, Amizuka N. Histology of human cementum: its structure, function, and
                    development. Jpn Dent Sci Rev 2016;52:63-74.  DOI  PubMed  PMC
               85.       Gonçalves PF, Sallum EA, Sallum AW, et al. Dental cementum reviewed: development, structure, composition, regeneration and
                    potential functions. Braz J Oral Sci 2005;4:651-8. Available from: https://periodicos.sbu.unicamp.br/ojs/index.php/bjos/article/view/
                    8641790 [Last accessed on 5 July 2023].
               86.       Neiders ME, Eick JD, Miller WA, Leitner JW. Electron probe microanalysis of cementum and underlying dentin in young permanent
                    teeth. J Dent Res 1972;51:122-30.  DOI  PubMed
               87.       Nakagaki H, Weatherell JA, Strong M, Robinson C. Distribution of fluoride in human cementum. Arch Oral Biol 1985;30:101-4.
                    DOI  PubMed
               88.       Andras NL, Mohamed FF, Chu EY, Foster BL. Between a rock and a hard place: regulation of mineralization in the periodontium.
                    Genesis 2022;60:e23474.  DOI  PubMed  PMC
               89.       Foster BL, Nociti FH, Somerman MJ. Development and structure of cementum. In: Naji S, Rendu W, Gourichon L, editors. Dental
                    cementum in anthropology. Cambridge University Press; 2022. pp. 46-64.  DOI
               90.       Lundberg YW, Xu Y, Thiessen KD, Kramer KL. Mechanisms of otoconia and otolith development. Dev Dyn 2015;244:239-53.  DOI
                    PubMed  PMC
               91.       Zhao X, Yang H, Yamoah EN, Lundberg YW. Gene targeting reveals the role of Oc90 as the essential organizer of the otoconial
                    organic matrix. Dev Biol 2007;304:508-24.  DOI  PubMed  PMC
               92.       Thompson RB, Reffatto V, Bundy JG, et al. Identification of hydroxyapatite spherules provides new insight into subretinal pigment
                    epithelial deposit formation in the aging eye. Proc Natl Acad Sci USA 2015;112:1565-70.  DOI
               93.       Landis WJ, Moradian-Oldak J, Weiner S. Topographic imaging of mineral and collagen in the calcifying turkey tendon. Connect
                    Tissue Res 1991;25:181-96.  DOI  PubMed
               94.       Siegal DS, Wu JS, Newman JS, Del Cura JL, Hochman MG. Calcific tendinitis: a pictorial review. Can Assoc Radiol J 2009;60:263-
                    72.  DOI  PubMed
               95.       Reynolds JL, Skepper JN, McNair R, et al. Multifunctional roles for serum protein fetuin-a in inhibition of human vascular smooth
                    muscle cell calcification. J Am Soc Nephrol 2005;16:2920-30.  DOI
               96.       Faria LL, Babler F, Ferreira LC, de Noronha Junior OA, Marsolla FL, Ferreira DL. Soft tissue calcifications: a pictorial essay. Radiol
                    Bras 2020;53:337-44.  DOI  PubMed  PMC
               97.       Wang D, Wang X, Huang L, et al. Unraveling an innate mechanism of pathological mineralization-regulated inflammation by a
                    nanobiomimetic system. Adv Healthc Mater 2021;10:e2101586.  DOI
               98.       Giachelli CM. Vascular calcification mechanisms. J Am Soc Nephrol 2004;15:2959-64.  DOI  PubMed
               99.       Schrijvers DM, De Meyer GR, Kockx MM, Herman AG, Martinet W. Phagocytosis of apoptotic cells by macrophages is impaired in
                    atherosclerosis. Arterioscler Thromb Vasc Biol 2005;25:1256-61.  DOI  PubMed
               100.      Shanahan CM. Inflammation ushers in calcification: a cycle of damage and protection? Circulation 2007;116:2782-5.  DOI  PubMed
               101.      Pugliese G, Iacobini C, Blasetti Fantauzzi C, Menini S. The dark and bright side of atherosclerotic calcification. Atherosclerosis
                    2015;238:220-30.  DOI
               102.      Słojewski M, Czerny B, Safranow K, et al. Microelements in stones, urine, and hair of stone formers: a new key to the puzzle of
                    lithogenesis? Biol Trace Elem Res 2010;137:301-16.  PubMed
               103.      Bala Y, Farlay D, Boivin G. Bone mineralization: from tissue to crystal in normal and pathological contexts. Osteoporos Int
                    2013;24:2153-66.  DOI  PubMed
               104.      Roschger P, Paschalis EP, Fratzl P, Klaushofer K. Bone mineralization density distribution in health and disease. Bone 2008;42:456-
                    66.  DOI  PubMed
               105.      Roschger P, Misof B, Paschalis E, Fratzl P, Klaushofer K. Changes in the degree of mineralization with osteoporosis and its
                    treatment. Curr Osteoporos Rep 2014;12:338-50.  DOI  PubMed
               106.      Kurdi MS. Chronic fluorosis: the disease and its anaesthetic implications. Indian J Anaesth 2016;60:157-62.  DOI  PubMed  PMC
               107.      Rodan GA, Martin TJ. Therapeutic approaches to bone diseases. Science 2000;289:1508-14.  DOI  PubMed
               108.      Faibish D, Ott SM, Boskey AL. Mineral changes in osteoporosis: a review. Clin Orthop Relat Res 2006;443:28-38.  DOI  PubMed
                    PMC
               109.      Feroz S, Khan AS. 7-fluoride-substituted hydroxyapatite. In: Khan AS, Chaudhry AA, editor. Handbook of ionic substituted
                    hydroxyapatites, Soston, UK: Woodhead, 2020; pp. 175-96.  DOI
   51   52   53   54   55   56   57   58   59   60   61