Page 188 - Read Online
P. 188

Page 24 of 24              He et al. Microstructures 2023;3:xxx  https://dx.doi.org/10.20517/microstructures.2023.29

               113.      Mahesh K, Ranjith SK, Mini RS. A deep autoencoder based approach for the inverse design of an acoustic-absorber. Eng Comput
                    2023.  DOI
               114.      Luo YT, Li PQ, Li DT, et al. Probability-density-based deep learning paradigm for the fuzzy design of functional metastructures.
                    Research 2020;2020:8757403.  DOI  PubMed  PMC
               115.      Gurbuz C, Kronowetter F, Dietz C, Eser M, Schmid J, Marburg S. Generative adversarial networks for the design of acoustic
                    metamaterials. J Acoust Soc Am 2021;149:1162.  DOI  PubMed
               116.      Ding H, Fang X, Jia B, Wang N, Cheng Q, Li Y. Deep learning enables accurate sound redistribution via nonlocal metasurfaces. Phys
                    Rev Appl 2021;16:064035.  DOI
               117.      Du Z, Mei J. Metagrating-based acoustic wavelength division multiplexing enabled by deterministic and probabilistic deep learning
                    models. Phys Rev Res 2022;4:033165.  DOI
               118.      Ahmed WW, Farhat M, Zhang X, Wu Y. Deterministic and probabilistic deep learning models for inverse design of broadband
                    acoustic cloak. Phys Rev Res 2021;3:013142.  DOI
               119.      Zhao T, Li Y, Zuo L, Zhang K. Machine-learning optimized method for regional control of sound fields. Extreme Mech Lett
                    2021;45:101297.  DOI
               120.      Chen J, Chen Y, Xu X, Zhou W, Huang G. A physics-guided machine learning for multifunctional wave control in active metabeams.
                    Extreme Mech Lett 2022;55:101827.  DOI
               121.      Long Y, Ren J, Chen H. Unsupervised manifold clustering of topological phononics. Phys Rev Lett 2020;124:185501.  DOI  PubMed
               122.      He L, Wen Z, Jin Y, Torrent D, Zhuang X, Rabczuk T. Inverse design of topological metaplates for flexural waves with machine
                    learning. Mater Des 2021;199:109390.  DOI
               123.     Muhammad, Ogun O, Kennedy J. Inverse design of a topological phononic beam with interface modes. J Phys D Appl Phys
                    2022;56:015106.  DOI
               124.     Du Z, Ding X, Chen H, et al. Optimal design of topological waveguides by machine learning. Front Mater 2022;9:1075073.  DOI
               125.     Yu LW, Deng DL. Unsupervised learning of non-Hermitian topological phases. Phys Rev Lett 2021;126:240402.  DOI  PubMed
               126.      Cheng Z, Yu Z. Supervised machine learning topological states of one-dimensional non-Hermitian systems. Chin Phys Lett
                    2021;38:070302.  DOI
               127.     Narayan B, Narayan A. Machine learning non-Hermitian topological phases. Phys Rev B 2021;103:035413.  DOI
               128.      Zhang L, Tang L, Huang Z, Zhang G, Huang W, Zhang D. Machine learning topological invariants of non-Hermitian systems. Phys
                    Rev A 2021;103:012419.  DOI
               129.     Miri MA, Alù A. Exceptional points in optics and photonics. Science 2019;363:eaar7709.  DOI  PubMed
               130.      Reja MA, Narayan A. Characterizing exceptional points using neural networks. Available from: https://arxiv.org/abs/2305.00776
                    [Last accessed on 14 Aug 2023].
               131.      Gu GX, Chen C, Richmond DJ, Buehler MJ. Bioinspired hierarchical composite design using machine learning: simulation, additive
                    manufacturing, and experiment. Mater Horiz 2018;5:939-45.  DOI
               132.      Hanakata PZ, Cubuk ED, Campbell DK, Park HS. Accelerated search and design of stretchable graphene kirigami using machine
                    learning. Phys Rev Lett 2018;121:255304.  DOI
               133.      Hanakata PZ, Cubuk ED, Campbell DK, Park HS. Forward and inverse design of kirigami via supervised autoencoder. Phys Rev Res
                    2020;2:042006.  DOI
               134.      Kollmann HT, Abueidda DW, Koric S, Guleryuz E, Sobh NA. Deep learning for topology optimization of 2D metamaterials. Mater
                    Des 2020;196:109098.  DOI
               135.      Tan RK, Zhang NL, Ye W. A deep learning - based method for the design of microstructural materials. Struct Multidisc Optim
                    2020;61:1417-38.  DOI
               136.      Garland AP, White BC, Jensen SC, Boyce BL. Pragmatic generative optimization of novel structural lattice metamaterials with
                    machine learning. Mater Des 2021;203:109632.  DOI
               137.      Tian J, Tang K, Chen X, Wang X. Machine learning-based prediction and inverse design of 2D metamaterial structures with tunable
                    deformation-dependent Poisson's ratio. Nanoscale 2022;14:12677-91.  DOI
               138.      Liu F, Jiang X, Wang X, Wang L. Machine learning-based design and optimization of curved beams for multistable structures and
                    metamaterials. Extreme Mech Lett 2020;41:101002.  DOI
               139.      Challapalli A, Patel D, Li G. Inverse machine learning framework for optimizing lightweight metamaterials. Mater Des
                    2021;208:109937.  DOI
               140.      Wang Y, Zeng Q, Wang J, Li Y, Fang D. Inverse design of shell-based mechanical metamaterial with customized loading curves
                    based on machine learning and genetic algorithm. Comput Methods Appl Mech Eng 2022;401:115571.  DOI
               141.      Chang Y, Wang H, Dong Q. Machine learning-based inverse design of auxetic metamaterial with zero Poisson's ratio. Mater Today
                    Commun 2022;30:103186.  DOI
   183   184   185   186   187   188   189   190   191   192   193