Page 187 - Read Online
P. 187

He et al. Microstructures 2023;3:xxx  https://dx.doi.org/10.20517/microstructures.2023.29  Page 23 of 24

               82.       Liu D, Tan Y, Khoram E, Yu Z. Training deep neural networks for the inverse design of nanophotonic structures. ACS Photonics
                    2018;5:1365-9.  DOI
               83.       Kaelbling LP, Littman ML, Moore AW. Reinforcement learning: a survey. J Artif Intell Res 1996;4:237-85. Available from: https://
                    arxiv.org/abs/cs/9605103 [Last accessed on 14 Aug 2023].
               84.       Silver D, Schrittwieser J, Simonyan K, et al. Mastering the game of go without human knowledge. Nature 2017;550:354-9.  DOI
               85.       Kiran BR, Sobh I, Talpaert V, et al. Deep reinforcement learning for autonomous driving: a survey. IEEE Trans Intell Transport Syst
                    2022;23:4909-26.  DOI
               86.       Zhu R, Qiu T, Wang J, et al. Phase-to-pattern inverse design paradigm for fast realization of functional metasurfaces via transfer
                    learning. Nat Commun 2021;12:2974.  DOI  PubMed  PMC
               87.       Kim Y, Kim Y, Yang C, Park K, Gu GX, Ryu S. Deep learning framework for material design space exploration using active transfer
                    learning and data augmentation. NPJ Comput Mater 2021;140:7.  DOI
               88.      Alzubi J, Nayyar A, Kumar A. Machine learning from theory to algorithms: an overview. J Phys Conf Ser 2018;1142:012012.  DOI
               89.       Mahesh B. Machine learning algorithms - a review. Int J Sci Res 2020;9:381-6. Available from: https://www.ijsr.net/
                    getabstract.php?paperid=ART20203995 [Last accessed on 9 Oct 2023].
               90.       Abadi Mı, Agarwal A, Barham P, et al. TensorFlow: large-scale machine learning on heterogeneous distributed systems. Available
                    from: https://arxiv.org/abs/1603.04467 [Last accessed on 14 Aug 2023].
               91.       Paszke A, Gross S, Massa F, et al. PyTorch: an imperative style, high-performance deep learning library. Available from: https://
                    arxiv.org/abs/1912.01703 [Last accessed on 14 Aug 2023].
               92.       Liu CX, Yu GL. Predicting the dispersion relations of one-dimensional phononic crystals by neural networks. Sci Rep 2019;9:15322.
                    DOI  PubMed  PMC
               93.       Zhang J, Li Y, Zhao T, Zhang Q, Zuo L, Zhang K. Machine-learning based design of digital materials for elastic wave control.
                    Extreme Mech Lett 2021;48:101372.  DOI
               94.       Jiang W, Zhu Y, Yin G, Lu H, Xie L, Yin M. Dispersion relation prediction and structure inverse design of elastic metamaterials via
                    deep learning. Mater Today Phys 2022;22:100616.  DOI
               95.       Han S, Han Q, Li C. Deep-learning-based inverse design of phononic crystals for anticipated wave attenuation. J Appl Phys
                    2022;132:154901.  DOI
               96.      Liu C, Yu G, Zhao G. Neural networks for inverse design of phononic crystals. AIP Adv 2019;9:085223.  DOI
               97.       Dong J, Qin Q, Xiao Y. Nelder-mead optimization of elastic metamaterials via machine-learning-aided surrogate modeling. Int J Appl
                    Mech 2020;12:2050011.  DOI
               98.       Wu  L,  Liu  L,  Wang  Y,  et  al.  A  machine  learning-based  method  to  design  modular  metamaterials.  Extreme  Mech  Lett
                    2020;36:100657.  DOI
               99.       Li X, Ning S, Liu Z, Yan Z, Luo C, Zhuang Z. Designing phononic crystal with anticipated band gap through a deep learning based
                    data-driven method. Comput Methods Appl Mech Eng 2020;361:112737.  DOI
               100.      Miao X, Dong HW, Wang Y. Deep learning of dispersion engineering in two-dimensional phononic crystals. Eng Optim
                    2023;55:125-39.  DOI
               101.      Jin Y, Zeng S, Wen Z, He L, Li Y, Li Y. Deep-subwavelength lightweight metastructures for low-frequency vibration isolation.
                    Mater Des 2022;215:110499.  DOI
               102.      On S, Moon H, Yeon Park S, et al. Design of periodic arched structures integrating the structural nonlinearity and band gap effect
                    for vibration isolation. Mater Des 2022;224:111397.  DOI
               103.      Luo C, Ning S, Liu Z, Zhuang Z. Interactive inverse design of layered phononic crystals based on reinforcement learning. Extreme
                    Mech Lett 2020;36:100651.  DOI
               104.      Wu R, Liu T, Jahanshahi MR, Semperlotti F. Design of one-dimensional acoustic metamaterials using machine learning and cell
                    concatenation. Struct Multidisc Optim 2021;63:2399-423.  DOI
               105.      He L, Guo H, Jin Y, Zhuang X, Rabczuk T, Li Y. Machine-learning-driven on-demand design of phononic beams. Sci China Phys
                    Mech Astron 2022;65:214612.  DOI
               106.      Donda K, Zhu Y, Merkel A, et al. Ultrathin acoustic absorbing metasurface based on deep learning approach. Smart Mater Struct
                    2021;30:085003.  DOI
               107.      Donda K, Zhu Y, Merkel A, Wan S, Assouar B. Deep learning approach for designing acoustic absorbing metasurfaces with high
                    degrees of freedom. Extreme Mech Lett 2022;56:101879.  DOI
               108.      Zhang H, Wang Y, Zhao H, Lu K, Yu D, Wen J. Accelerated topological design of metaporous materials of broadband sound
                    absorption performance by generative adversarial networks. Mater Des 2021;207:109855.  DOI
               109.      Liu L, Xie L, Huang W, Zhang XJ, Lu M, Chen Y. Broadband acoustic absorbing metamaterial via deep learning approach. Appl
                    Phys Lett 2022;120:251701.  DOI
               110.      Jin Y, Yang Y, Wen Z, et al. Lightweight sound-absorbing metastructures with perforated fish-belly panels. Int J Mech Sci
                    2022;226:107396.  DOI
               111.      Gu T, Wen Z, He L, et al. A lightweight metastructure for simultaneous low-frequency broadband sound absorption and vibration
                    isolation. J Acoust Soc Am 2023;153:96-104.  DOI
               112.      Mahesh K, Kumar Ranjith S, Mini RS. Inverse design of a Helmholtz resonator based low-frequency acoustic absorber using deep
                    neural network. J Appl Phys 2021;129:174901.  DOI
   182   183   184   185   186   187   188   189   190   191   192