Page 14 - Read Online
P. 14
Page 10 of 11 Liu et al. Microstructures 2023;3:2023009 https://dx.doi.org/10.20517/microstructures.2022.29
10. Xie A, Qi H, Zuo R, Tian A, Chen J, Zhang S. An environmentally-benign NaNbO based perovskite antiferroelectric alternative to
3
traditional lead-based counterparts. J Mater Chem C 2019;7:15153-61. DOI
11. Dong X, Li X, Chen X, et al. High energy storage density and power density achieved simultaneously in NaNbO -based lead-free
3
ceramics via antiferroelectricity enhancement. J Materiomics 2021;7:629-39. DOI
12. Tian A, Zuo R, Qi H, Shi M. Large energy-storage density in transition-metal oxide modified NaNbO -Bi(Mg Ti )O lead-free
3 0.5 0.5 3
ceramics through regulating the antiferroelectric phase structure. J Mater Chem A 2020;8:8352-9. DOI
13. Bokov AA, Ye Z. Dielectric relaxation in relaxor ferroelectrics. J Adv Dielectr 2012;2:1241010. DOI
14. Cross LE. Relaxor ferroelectrics. Ferroelectrics 1987;76:241-67. DOI
15. Pan H, Lan S, Xu S, et al. Ultrahigh energy storage in superparaelectric relaxor ferroelectrics. Science 2021;374:100-104. DOI
16. Chen L, Wang N, Zhang Z, et al. Local diverse polarization optimized comprehensive energy-storage performance in lead-free
superparaelectrics. Adv Mater 2022;34:e2205787. DOI
17. Yang W, Zeng H, Yan F, et al. Superior energy storage properties in NaNbO -based ceramics via synergistically optimizing domain
3
and band structures. J Mater Chem A 2022;10:11613-24. DOI
18. Qi H, Zuo R. Linear-like lead-free relaxor antiferroelectric (Bi Na )TiO -NaNbO with giant energy-storage density/efficiency and
0.5 0.5 3 3
super stability against temperature and frequency. J Mater Chem A 2019;7:3971-8. DOI
19. Ye H, Yang F, Pan Z, et al. Significantly improvement of comprehensive energy storage performances with lead-free relaxor
ferroelectric ceramics for high-temperature capacitors applications. Acta Mater 2021;203:116484. DOI
20. Kang R, Wang Z, Lou X, et al. Energy storage performance of Bi Na TiO -based relaxor ferroelectric ceramics with superior
0.5 0.5 3
temperature stability under low electric fields. Chem Eng J 2021;410:128376. DOI
21. Glazer AM, Megaw HD. Studies of the lattice parameters and domains in the phase transitions of NaNbO . Acta Crystallogr A
3
1973;29:489-95. DOI
22. Megaw HD. The seven phases of sodium niobate. Ferroelectrics 1974;7:87-9. DOI
23. Megaw HD, Wells M. The space group of NaNbO and (Na K )NbO . Acta Crystallogr 1958;11:858-62. DOI
3 0.995 0.005 3
24. Guo H, Shimizu H, Mizuno Y, Randall CA. Strategy for stabilization of the antiferroelectric phase (Pbma) over the metastable
ferroelectric phase (P2 ma) to establish double loop hysteresis in lead-free (1-x)NaNbO -xSrZrO solid solution. J Appl Phys
1
3
3
2015;117:214103. DOI
25. Qi H, Zuo R, Xie A, et al. Ultrahigh energy-storage density in NaNbO -based lead-free relaxor antiferroelectric ceramics with
3
nanoscale domains. Adv Funct Mater 2019;29:1903877. DOI
26. Guo H, Shimizu H, Randall CA. Direct evidence of an incommensurate phase in NaNbO and its implication in NaNbO -based lead-
3 3
free antiferroelectrics. Appl Phys Lett 2015;107:112904. DOI
27. Reznichenko LA, Shilkina LA, Gagarina ES, et al. Structural instabilities, incommensurate modulations and P and Q phases in sodium
niobate in the temperature range 300-500 K. Crystallogr Rep 2003;48:448-56. DOI
28. Wang X, Shen Z, Hu Z, Qin L, Tang S, Kuok M. High temperature Raman study of phase transitions in antiferroelectric NaNbO . J
3
Mol Struct 1996;385:1-6. DOI
29. Bokov AA, Ye Z. Recent progress in relaxor ferroelectrics with perovskite structure. J Mater Sci 2006;41:31-52. DOI
30. Hu Q, Tian Y, Zhu Q, et al. Achieve ultrahigh energy storage performance in BaTiO -Bi(Mg Ti )O relaxor ferroelectric ceramics
1/2
1/2
3
3
via nano-scale polarization mismatch and reconstruction. Nano Energy 2020;67:104264. DOI
31. Yan F, Zhou X, He X, et al. Superior energy storage properties and excellent stability achieved in environment-friendly ferroelectrics
via composition design strategy. Nano Energy 2020;75:105012. DOI
32. Glazer AM. Simple ways of determining perovskite structures. Acta Crystallogr A 1975;31:756-62. DOI
33. Guo H, Shimizu H, Randall CA. Microstructural evolution in NaNbO -based antiferroelectrics. J Appl Phys 2015;118:174107. DOI
3
34. Liu Z, Lu J, Mao Y, Ren P, Fan H. Energy storage properties of NaNbO -CaZrO ceramics with coexistence of ferroelectric and
3
3
antiferroelectric phases. J Eur Ceram Soc 2018;38:4939-45. DOI
35. Shimizu H, Guo H, Reyes-Lillo SE, Mizuno Y, Rabe KM, Randall CA. Lead-free antiferroelectric: xCaZrO -(1-x)NaNbO system (0 ≤
3 3
x ≤ 0.10). Dalton Trans 2015;44:10763-72. DOI
36. Tunkasiri T, Rujijanagul G. Dielectric strength of fine grained barium titanate ceramics. J Mater Sci Lett 1996;15:1767-9. DOI
37. Luo N, Han K, Cabral MJ, et al. Constructing phase boundary in AgNbO antiferroelectrics: pathway simultaneously achieving high
3
energy density and efficiency. Nat Commun 2020;11:4824. DOI
38. Chao W, Gao J, Yang T, Li Y. Excellent energy storage performance in La and Ta co-doped AgNbO antiferroelectric ceramics. J Eur
3
Ceram Soc 2021;41:7670-7. DOI
39. Chen J, Qi H, Zuo R. Realizing Stable Relaxor Antiferroelectric and Superior Energy Storage Properties in (Na 1-x/2 La )(Nb Ti )O 3
x/2
1-x
x
Lead-Free Ceramics through A/B-Site Complex Substitution. ACS Appl Mater Interfaces 2020;12:32871-9. DOI
40. Lu Z, Bao W, Wang G, et al. Mechanism of enhanced energy storage density in AgNbO -based lead-free antiferroelectrics. Nano
3
Energy 2021;79:105423. DOI
41. Li S, Hu T, Nie H, et al. Giant energy density and high efficiency achieved in silver niobate-based lead-free antiferroelectric ceramic
capacitors via domain engineering. Energy Stor Mater 2021;34:417-26. DOI
42. Guo B, Yan Y, Tang M, et al. Energy storage performance of Na Bi TiO based lead-free ferroelectric ceramics prepared via non-
0.5 0.5 3
uniform phase structure modification and rolling process. Chem Eng J 2021;420:130475. DOI
43. Chen H, Shi J, Dong X, et al. Enhanced thermal and frequency stability and decent fatigue endurance in lead-free NaNbO -based
3