Page 14 - Read Online
P. 14

Page 10 of 11          Liu et al. Microstructures 2023;3:2023009  https://dx.doi.org/10.20517/microstructures.2022.29

               10.      Xie A, Qi H, Zuo R, Tian A, Chen J, Zhang S. An environmentally-benign NaNbO  based perovskite antiferroelectric alternative to
                                                                          3
                   traditional lead-based counterparts. J Mater Chem C 2019;7:15153-61.  DOI
               11.      Dong X, Li X, Chen X, et al. High energy storage density and power density achieved simultaneously in NaNbO -based lead-free
                                                                                               3
                   ceramics via antiferroelectricity enhancement. J Materiomics 2021;7:629-39.  DOI
               12.      Tian A, Zuo R, Qi H, Shi M. Large energy-storage density in transition-metal oxide modified NaNbO -Bi(Mg Ti )O  lead-free
                                                                                        3    0.5  0.5  3
                   ceramics through regulating the antiferroelectric phase structure. J Mater Chem A 2020;8:8352-9.  DOI
               13.      Bokov AA, Ye Z. Dielectric relaxation in relaxor ferroelectrics. J Adv Dielectr 2012;2:1241010.  DOI
               14.      Cross LE. Relaxor ferroelectrics. Ferroelectrics 1987;76:241-67.  DOI
               15.      Pan H, Lan S, Xu S, et al. Ultrahigh energy storage in superparaelectric relaxor ferroelectrics. Science 2021;374:100-104.  DOI
               16.      Chen L, Wang N, Zhang Z, et al. Local diverse polarization optimized comprehensive energy-storage performance in lead-free
                   superparaelectrics. Adv Mater 2022;34:e2205787.  DOI
               17.      Yang W, Zeng H, Yan F, et al. Superior energy storage properties in NaNbO -based ceramics via synergistically optimizing domain
                                                                      3
                   and band structures. J Mater Chem A 2022;10:11613-24.  DOI
               18.      Qi H, Zuo R. Linear-like lead-free relaxor antiferroelectric (Bi Na )TiO -NaNbO  with giant energy-storage density/efficiency and
                                                            0.5  0.5  3  3
                   super stability against temperature and frequency. J Mater Chem A 2019;7:3971-8.  DOI
               19.      Ye H, Yang F, Pan Z, et al. Significantly improvement of comprehensive energy storage performances with lead-free relaxor
                   ferroelectric ceramics for high-temperature capacitors applications. Acta Mater 2021;203:116484.  DOI
               20.      Kang R, Wang Z, Lou X, et al. Energy storage performance of Bi Na TiO -based relaxor ferroelectric ceramics with superior
                                                                0.5  0.5  3
                   temperature stability under low electric fields. Chem Eng J 2021;410:128376.  DOI
               21.      Glazer AM, Megaw HD. Studies of the lattice parameters and domains in the phase transitions of NaNbO . Acta Crystallogr A
                                                                                            3
                   1973;29:489-95.  DOI
               22.     Megaw HD. The seven phases of sodium niobate. Ferroelectrics 1974;7:87-9.  DOI
               23.     Megaw HD, Wells M. The space group of NaNbO  and (Na  K  )NbO . Acta Crystallogr 1958;11:858-62.  DOI
                                                   3     0.995  0.005  3
               24.      Guo H, Shimizu H, Mizuno Y, Randall CA. Strategy for stabilization of the antiferroelectric phase (Pbma) over the metastable
                   ferroelectric phase (P2 ma) to establish double loop hysteresis in lead-free (1-x)NaNbO -xSrZrO  solid solution. J Appl Phys
                                   1
                                                                                3
                                                                                      3
                   2015;117:214103.  DOI
               25.      Qi H, Zuo R, Xie A, et al. Ultrahigh energy-storage density in NaNbO -based lead-free relaxor antiferroelectric ceramics with
                                                                    3
                   nanoscale domains. Adv Funct Mater 2019;29:1903877.  DOI
               26.      Guo H, Shimizu H, Randall CA. Direct evidence of an incommensurate phase in NaNbO  and its implication in NaNbO -based lead-
                                                                             3                   3
                   free antiferroelectrics. Appl Phys Lett 2015;107:112904.  DOI
               27.      Reznichenko LA, Shilkina LA, Gagarina ES, et al. Structural instabilities, incommensurate modulations and P and Q phases in sodium
                   niobate in the temperature range 300-500 K. Crystallogr Rep 2003;48:448-56.  DOI
               28.      Wang X, Shen Z, Hu Z, Qin L, Tang S, Kuok M. High temperature Raman study of phase transitions in antiferroelectric NaNbO . J
                                                                                                        3
                   Mol Struct 1996;385:1-6.  DOI
               29.      Bokov AA, Ye Z. Recent progress in relaxor ferroelectrics with perovskite structure. J Mater Sci 2006;41:31-52.  DOI
               30.      Hu Q, Tian Y, Zhu Q, et al. Achieve ultrahigh energy storage performance in BaTiO -Bi(Mg Ti )O  relaxor ferroelectric ceramics
                                                                                   1/2
                                                                                1/2
                                                                                      3
                                                                           3
                   via nano-scale polarization mismatch and reconstruction. Nano Energy 2020;67:104264.  DOI
               31.      Yan F, Zhou X, He X, et al. Superior energy storage properties and excellent stability achieved in environment-friendly ferroelectrics
                   via composition design strategy. Nano Energy 2020;75:105012.  DOI
               32.      Glazer AM. Simple ways of determining perovskite structures. Acta Crystallogr A 1975;31:756-62.  DOI
               33.      Guo H, Shimizu H, Randall CA. Microstructural evolution in NaNbO -based antiferroelectrics. J Appl Phys 2015;118:174107.  DOI
                                                                3
               34.      Liu Z, Lu J, Mao Y, Ren P, Fan H. Energy storage properties of NaNbO -CaZrO  ceramics with coexistence of ferroelectric and
                                                                    3
                                                                          3
                   antiferroelectric phases. J Eur Ceram Soc 2018;38:4939-45.  DOI
               35.      Shimizu H, Guo H, Reyes-Lillo SE, Mizuno Y, Rabe KM, Randall CA. Lead-free antiferroelectric: xCaZrO -(1-x)NaNbO  system (0 ≤
                                                                                        3        3
                   x ≤ 0.10). Dalton Trans 2015;44:10763-72.  DOI
               36.      Tunkasiri T, Rujijanagul G. Dielectric strength of fine grained barium titanate ceramics. J Mater Sci Lett 1996;15:1767-9.  DOI
               37.      Luo N, Han K, Cabral MJ, et al. Constructing phase boundary in AgNbO  antiferroelectrics: pathway simultaneously achieving high
                                                                   3
                   energy density and efficiency. Nat Commun 2020;11:4824.  DOI
               38.      Chao W, Gao J, Yang T, Li Y. Excellent energy storage performance in La and Ta co-doped AgNbO  antiferroelectric ceramics. J Eur
                                                                                    3
                   Ceram Soc 2021;41:7670-7.  DOI
               39.      Chen J, Qi H, Zuo R. Realizing Stable Relaxor Antiferroelectric and Superior Energy Storage Properties in (Na 1-x/2 La )(Nb Ti )O   3
                                                                                                x/2
                                                                                                    1-x
                                                                                                       x
                   Lead-Free Ceramics through A/B-Site Complex Substitution. ACS Appl Mater Interfaces 2020;12:32871-9.  DOI
               40.      Lu Z, Bao W, Wang G, et al. Mechanism of enhanced energy storage density in AgNbO -based lead-free antiferroelectrics. Nano
                                                                              3
                   Energy 2021;79:105423.  DOI
               41.      Li S, Hu T, Nie H, et al. Giant energy density and high efficiency achieved in silver niobate-based lead-free antiferroelectric ceramic
                   capacitors via domain engineering. Energy Stor Mater 2021;34:417-26.  DOI
               42.      Guo B, Yan Y, Tang M, et al. Energy storage performance of Na Bi TiO  based lead-free ferroelectric ceramics prepared via non-
                                                              0.5  0.5  3
                   uniform phase structure modification and rolling process. Chem Eng J 2021;420:130475.  DOI
               43.      Chen H, Shi J, Dong X, et al. Enhanced thermal and frequency stability and decent fatigue endurance in lead-free NaNbO -based
                                                                                                     3
   9   10   11   12   13   14   15   16   17   18   19