Page 35 - Read Online
P. 35
Page 10 of 11 Zhao et al. Microstructures 2023;3:2023002 https://dx.doi.org/10.20517/microstructures.2022.21
Copyright
© The Author(s) 2023.
REFERENCES
1. Zhao P, Cai Z, Wu L, et al. Perspectives and challenges for lead-free energy-storage multilayer ceramic capacitors. J Adv Ceram
2021;10:1153-93. DOI
2. Wang G, Lu Z, Li Y, et al. Electroceramics for high-energy density capacitors: current status and future perspectives. Chem Rev
2021;121:6124-72. DOI PubMed PMC
3. Palneedi H, Peddigari M, Hwang G-T, Jeong D-Y, Ryu J. High-performance dielectric ceramic films for energy storage capacitors:
progress and outlook. Adv Funct Mater 2018;28:1803665. DOI
4. Li Q, Chen L, Gadinski MR, et al. Flexible high-temperature dielectric materials from polymer nanocomposites. Nature 2015;523:576-
9. DOI PubMed
5. Whittingham MS. Materials challenges facing electrical energy storage. MRS Bull 2008;33:411-9. DOI
6. Li J, Shen Z, Chen X, et al. Grain-orientation-engineered multilayer ceramic capacitors for energy storage applications. Nat Mater
2020;19:999-1005. DOI PubMed
7. Xu R, Feng Y, Wei X, Xu Z. Analysis on nonlinearity of antiferroelectric multilayer ceramic capacitor (MLCC) for energy storage.
IEEE Trans Dielect Electr Insul 2019;26:2005-11. DOI
8. Love GR. Energy storage in ceramic dielectrics. J Am Ceram Soc 1990;73:323-8. DOI
9. Jow TR, MacDougall FW, Ennis JB, et al. Pulsed power capacitor development and outlook. In 2015 IEEE Pulsed Power Conference
(PPC); 2015, pp. 1-7. DOI
10. Wang Y, Zhou X, Chen Q, Chu BJ, Zhang QM. Recent development of high energy density polymers for dielectric capacitors. IEEE
Trans Dielect Electr Insul 2010;17:1036-42. DOI
11. Kim J, Saremi S, Acharya M, et al. Ultrahigh capacitive energy density in ion-bombarded relaxor ferroelectric films. Science
2020;369:81-4. DOI PubMed
12. Liu Z, Lu T, Ye J, et al. Antiferroelectrics for energy storage applications: a review. Adv Mater Technol 2018;3:1800111. DOI
13. Hong K, Lee TH, Suh JM, Yoon S-H, Jang HW. Perspectives and challenges in multilayer ceramic capacitors for next generation
electronics. J Mater Chem C 2019;7:9782-802. DOI
14. Li F, Zhai J, Shen B, Zeng H. Recent progress of ecofriendly perovskite-type dielectric ceramics for energy storage applications. J Adv
Dielect 2019;8:1830005. DOI
15. Zhang H, Wei T, Zhang Q, et al. A review on the development of lead-free ferroelectric energy-storage ceramics and multilayer
capacitors. J Mater Chem C 2020;8:16648-67. DOI
16. Yao Z, Song Z, Hao H, et al. Homogeneous/inhomogeneous-structured dielectrics and their energy-storage performances. Adv Mater
2017;29:1601727. DOI PubMed
17. Ogihara H, Randall CA, Trolier-McKinstry S. High-energy density capacitors utilizing 0.7BaTiO -0.3BiScO ceramics. J Am Ceram
3
3
Soc 2009;92:1719-24. DOI
18. Wang Z, Kang R, Liu W, et al. (Bi Na )TiO -based relaxor ferroelectrics with medium permittivity featuring enhanced energy-
0.5 0.5 3
storage density and excellent thermal stability. Chem Eng J 2022:427. DOI
19. Yang L, Kong X, Cheng Z, Zhang S. Ultra-high energy storage performance with mitigated polarization saturation in lead-free
relaxors. J Mater Chem A 2019;7:8573-80. DOI
20. Yang L, Kong X, Cheng Z, Zhang S. Enhanced energy density and electric cycling reliability via MnO modification in sodium
2
niobate-based relaxor dielectric capacitors. J Mater Res ;2021, 36:1214-1222. DOI
21. Wang X, Huan Y, Zhao P, et al. Optimizing the grain size and grain boundary morphology of (K,Na)NbO -based ceramics: Paving the
3
way for ultrahigh energy storage capacitors. J Mater 2021;7:780-9. DOI
22. Zhao P, Wang H, Wu L, et al. High-performance relaxor ferroelectric materials for energy storage applications. Adv Energy Mater
2019;9:1803048. DOI
23. Pan H, Li F, Liu Y, et al. Ultrahigh-energy density lead-free dielectric films via polymorphic nanodomain design. Science
2019;365:578-82. DOI PubMed
24. Yuan Q, Li G, Yao F-Z, et al. Simultaneously achieved temperature-insensitive high energy density and efficiency in domain
engineered BaTiO -Bi(Mg Zr )O lead-free relaxor ferroelectrics. Nano Energy 2018;52:203-10. DOI
0.5
3
3
0.5
25. Wu L, Wang X, Li L. Lead-free BaTiO -Bi(Zn Nb )O weakly coupled relaxor ferroelectric materials for energy storage. RSC Adv
3
2/3
3
1/3
2016;6:14273-82. DOI
26. Zhou M, Liang R, Zhou Z, Dong X. Superior energy storage properties and excellent stability of novel NaNbO -based lead-free
3
ceramics with A-site vacancy obtained via a Bi O substitution strategy. J Mater Chem A 2018;6:17896-904. DOI
2 3
27. Zhao P, Cai Z, Chen L, et al. Ultra-high energy storage performance in lead-free multilayer ceramic capacitors via a multiscale
optimization strategy. Energy Environ Sci 2020;13:4882-90. DOI
28. Zhao P, Chen L, Li L, Wang X. Ultrahigh energy density with excellent thermal stability in lead-free multilayer ceramic capacitors via
composite strategy design. J Mater Chem A 2021;9:25914-21. DOI
29. Chen L, Wang H, Zhao P, et al. Effect of MnO on the dielectric properties of Nb-doped BaTiO -(Bi Na )TiO ceramics for X9R
3
3
2
0.5
0.5