Page 35 - Read Online
P. 35

Page 10 of 11        Zhao et al. Microstructures 2023;3:2023002  https://dx.doi.org/10.20517/microstructures.2022.21

               Copyright
               © The Author(s) 2023.


               REFERENCES
               1.       Zhao P, Cai Z, Wu L, et al. Perspectives and challenges for lead-free energy-storage multilayer ceramic capacitors. J Adv Ceram
                   2021;10:1153-93.  DOI
               2.       Wang G, Lu Z, Li Y, et al. Electroceramics for high-energy density capacitors: current status and future perspectives. Chem Rev
                   2021;121:6124-72.  DOI  PubMed  PMC
               3.       Palneedi H, Peddigari M, Hwang G-T, Jeong D-Y, Ryu J. High-performance dielectric ceramic films for energy storage capacitors:
                   progress and outlook. Adv Funct Mater 2018;28:1803665.  DOI
               4.       Li Q, Chen L, Gadinski MR, et al. Flexible high-temperature dielectric materials from polymer nanocomposites. Nature 2015;523:576-
                   9.  DOI  PubMed
               5.       Whittingham MS. Materials challenges facing electrical energy storage. MRS Bull 2008;33:411-9.  DOI
               6.       Li J, Shen Z, Chen X, et al. Grain-orientation-engineered multilayer ceramic capacitors for energy storage applications. Nat Mater
                   2020;19:999-1005.  DOI  PubMed
               7.       Xu R, Feng Y, Wei X, Xu Z. Analysis on nonlinearity of antiferroelectric multilayer ceramic capacitor (MLCC) for energy storage.
                   IEEE Trans Dielect Electr Insul 2019;26:2005-11.  DOI
               8.       Love GR. Energy storage in ceramic dielectrics. J Am Ceram Soc 1990;73:323-8.  DOI
               9.       Jow TR, MacDougall FW, Ennis JB, et al. Pulsed power capacitor development and outlook. In 2015 IEEE Pulsed Power Conference
                   (PPC); 2015, pp. 1-7.  DOI
               10.      Wang Y, Zhou X, Chen Q, Chu BJ, Zhang QM. Recent development of high energy density polymers for dielectric capacitors. IEEE
                   Trans Dielect Electr Insul 2010;17:1036-42.  DOI
               11.      Kim J, Saremi S, Acharya M, et al. Ultrahigh capacitive energy density in ion-bombarded relaxor ferroelectric films. Science
                   2020;369:81-4.  DOI  PubMed
               12.      Liu Z, Lu T, Ye J, et al. Antiferroelectrics for energy storage applications: a review. Adv Mater Technol 2018;3:1800111.  DOI
               13.      Hong K, Lee TH, Suh JM, Yoon S-H, Jang HW. Perspectives and challenges in multilayer ceramic capacitors for next generation
                   electronics. J Mater Chem C 2019;7:9782-802.  DOI
               14.      Li F, Zhai J, Shen B, Zeng H. Recent progress of ecofriendly perovskite-type dielectric ceramics for energy storage applications. J Adv
                   Dielect 2019;8:1830005.  DOI
               15.      Zhang H, Wei T, Zhang Q, et al. A review on the development of lead-free ferroelectric energy-storage ceramics and multilayer
                   capacitors. J Mater Chem C 2020;8:16648-67.  DOI
               16.      Yao Z, Song Z, Hao H, et al. Homogeneous/inhomogeneous-structured dielectrics and their energy-storage performances. Adv Mater
                   2017;29:1601727.  DOI  PubMed
               17.      Ogihara H, Randall CA, Trolier-McKinstry S. High-energy density capacitors utilizing 0.7BaTiO -0.3BiScO  ceramics. J Am Ceram
                                                                                          3
                                                                                   3
                   Soc 2009;92:1719-24.  DOI
               18.      Wang Z, Kang R, Liu W, et al. (Bi Na )TiO -based relaxor ferroelectrics with medium permittivity featuring enhanced energy-
                                           0.5  0.5  3
                   storage density and excellent thermal stability. Chem Eng J 2022:427.  DOI
               19.      Yang L, Kong X, Cheng Z, Zhang S. Ultra-high energy storage performance with mitigated polarization saturation in lead-free
                   relaxors. J Mater Chem A 2019;7:8573-80.  DOI
               20.      Yang L, Kong X, Cheng Z, Zhang S. Enhanced energy density and electric cycling reliability via MnO  modification in sodium
                                                                                         2
                   niobate-based relaxor dielectric capacitors. J Mater Res ;2021, 36:1214-1222.  DOI
               21.      Wang X, Huan Y, Zhao P, et al. Optimizing the grain size and grain boundary morphology of (K,Na)NbO -based ceramics: Paving the
                                                                                       3
                   way for ultrahigh energy storage capacitors. J Mater 2021;7:780-9.  DOI
               22.      Zhao P, Wang H, Wu L, et al. High-performance relaxor ferroelectric materials for energy storage applications. Adv Energy Mater
                   2019;9:1803048.  DOI
               23.      Pan H, Li F, Liu Y, et al. Ultrahigh-energy density lead-free dielectric films via polymorphic nanodomain design. Science
                   2019;365:578-82.  DOI  PubMed
               24.      Yuan Q, Li G, Yao F-Z, et al. Simultaneously achieved temperature-insensitive high energy density and efficiency in domain
                   engineered BaTiO -Bi(Mg Zr )O  lead-free relaxor ferroelectrics. Nano Energy 2018;52:203-10.  DOI
                                    0.5
                               3
                                          3
                                       0.5
               25.      Wu L, Wang X, Li L. Lead-free BaTiO -Bi(Zn Nb )O  weakly coupled relaxor ferroelectric materials for energy storage. RSC Adv
                                             3
                                                  2/3
                                                        3
                                                     1/3
                   2016;6:14273-82.  DOI
               26.      Zhou M, Liang R, Zhou Z, Dong X. Superior energy storage properties and excellent stability of novel NaNbO -based lead-free
                                                                                               3
                   ceramics with A-site vacancy obtained via a Bi O  substitution strategy. J Mater Chem A 2018;6:17896-904.  DOI
                                                 2  3
               27.      Zhao P, Cai Z, Chen L, et al. Ultra-high energy storage performance in lead-free multilayer ceramic capacitors via a multiscale
                   optimization strategy. Energy Environ Sci 2020;13:4882-90.  DOI
               28.      Zhao P, Chen L, Li L, Wang X. Ultrahigh energy density with excellent thermal stability in lead-free multilayer ceramic capacitors via
                   composite strategy design. J Mater Chem A 2021;9:25914-21.  DOI
               29.      Chen L, Wang H, Zhao P, et al. Effect of MnO  on the dielectric properties of Nb-doped BaTiO -(Bi Na )TiO  ceramics for X9R
                                                                                             3
                                                                                  3
                                                  2
                                                                                         0.5
                                                                                      0.5
   30   31   32   33   34   35   36   37   38   39   40