Page 118 - Read Online
P. 118

Page 14 of 15                                                  Mathew et al. Vessel Plus 2020;4:11  I  http://dx.doi.org/10.20517/2574-1209.2019.35

                   proliferation and ppoptosis of smooth muscle cells. Cardiology 2017;137:43-53.
               90.  Jenkins NT, Padilla J, Boyle LJ, Credeur DP, Laughlin MH, et al. Disturbed blood flow acutely induces activation and apoptosis of the
                   human vascular endothelium. Hypertension 2013;61:615-21.
               91.  Lin ZB, Ci HB, Li Y, Cheng TP, Liu DH, et al. Endothelial microparticles are increased in congenital heart diseases and contribute to
                   endothelial dysfunction. J Transl Med 2017;15:4.
               92.  Smadja DM, Gaussem P, Mauge L, Lacroix R, Gandrille S, et al. Comparison of endothelial biomarkers according to reversibility of
                   pulmonary hypertension secondary to congenital heart disease. Ped Cardiol 2010;31:657-62.
               93.  Sirois I, Raymond MA, Brassard N, Cailhier JF, Fedjaev M, et al. Caspase-3-dependent export of TCTP: a novel pathway for
                   antiapoptotic intercellular communication. Cell Death Differ 2011;18:549-62.
               94.  Lavoie JR, Ormiston ML, Perez-Iratxeta C, Courtman DW, Jiang B, et al. Proteomic analysis implicates translationally controlled tumor
                   protein as a novel mediator of occlusive vascular remodeling in pulmonary arterial hypertension. Circulation 2014;129:2125-35.
               95.  Ferrer E, Dunmore BJ, Hassan D, Ormiston ML, Moore S, et al. A potential role for exosomal translationally controlled tumor protein
                   export in vascular remodeling in pulmonary arterial hypertension. Am J Respir Cart Care Med 2018;59:467-78.
               96.  Deng L, Blanco FJ, Stevens H, Lu R, Caudrillier A, et al. MicroRNA-143 activation regulates smooth muscle and endothelial cell
                   crosstalk in pulmonary arterial hypertension. Circ Res 2015;117:870-83.
               97.  Banz Y, Beldi G, Wu Y, Atkinson B, Usheva A, et al. CD39 is incorporated into plasma microparticles where it maintains functional
                   properties and impacts endothelial activation. Br J Haematol 2008;142:627-37.
               98.  Helenius MH, Vattulainen S, Orcholski M, Aho J, Komulainen A, et al. Suppression of endothelial CD39/ENTPD1 is associated with
                   pulmonary vascular remodeling in pulmonary arterial hypertension. Am J Physiol Lung Cell Mol Physiol 2015;308:L1046-57.
               99.  Visovatti SH, Hyman MC, Bouis D, Neubig R, McLaughlin VV, et al. Increased CD39 nucleotidase activity on microparticles from
                   patients with idiopathic pulmonary arterial hypertension. PLoS One 2012;7:e40829.
               100. Dereddy N, Huang J, Erb M, Guzel S, Wolk JH, et al. Associated inflammation or increased flow-mediated shear stress, but not the
                   pressure alone disrupts endothelial caveolin-1 in infants with pulmonary hypertension. Pulm Circ 2012;2:492-500.
               101. Amabile N, Heiss C, Real WM, Minasi P, McGlothlin D, et al. Circulating endothelial microparticle levels predict hemodynamic severity
                   of pulmonary hypertension. Am J Respir Crit Care Med 2008:177:1268-75.
               102. Murakami K, Mathew R, Farahami R, Peng H, Olson SC, et al. Smurf-1 ubiquitin ligase causes downregulation of BMP recptors and is
                   induced in monocrotaline and hypoxiamodles of pulmonary arterial hypertension. Exp Biol Med 2010;235:805-13.
               103. Atkinson C, Stewart S, Upton PD, Machado R, Thomson JR, et al. Primary pulmonary hypertension is associated with reduced pulmonary
                   vascular expression of type II bone morphogenetic protein receptor. Circulation 2002;105:1672-8.
               104. Oliveira SD, Castellon M, Chen J, Bonini MG, Gu X, et al. Inflammation-induced caveolin-1 and BMPRII depletion promotes endothelial
                   dysfunction and TGF-β-driven pulmonary vascular remodeling. Am J Physiol Lung Cell Mol Physiol 2017;312:L760-71.
               105. Oliveira SDS, Chen J, Castellon M, Mao M, Raj JU, et al. Injury-induced shedding of extracellular vesicles depletes endothelial cells of
                   cav-1 (Caveolin-1) and enables TGF-β (transforming growth factor-β)-dependent pulmonary arterial hypertension. Arterioscler Thromb
                   Vasc Biol 2019;39:1191-202.
               106. Patel HH, Zhang S, Murray F, Suda RY, Head BP, et al. Increased smooth muscle cell expression of caveolin-1 and caveolae contribute to
                   the pathophysiology of idiopathic pulmonary arterial hypertension. FASEB J 2007;21:2970-9.
               107. de la Cuesta F, Passalacqua I, Rodor J, Bhushan R, Denby L, et al. Extracellular vesicle cross-talk between pulmonary artery smooth
                   muscle cells and endothelium during excessive TGF-β signalling: implications for PAH vascular remodeling. Cell Communication
                   Signaling 2019;17:143.
               108. Welch-Reardon KM, Wu N, Hughes CC. A role for partial endothelial-mesenchymal transitions in angiogenesis? Areterioscler Thromb
                   Vasc Biol 2015;35:303-8.
               109. Zhu L, Xiao R, Zhang X, Lang Y, Liu F, et al. Supermine on endothelial extracellular vesicles mediates smoking-induced pulmonary
                   hypertension partially through calcium-sensing receptor. Arterioscler Thromb Vasc Biol 2019;39:482-95.
               110.  Wang P, Zhang C, Li J, Luo L, Zhang S, et al. Adipose-derived mesenchymal stromal cells improve hemodynamic function in pulmonary
                   arterial hypertension: identification of microRNAs implicated in modulating endothelial function Cytotherapy 2019;21:416-27.
               111.  Kanki-Horimoto S, Horimoto H, Mieno S, Kishida K, Watanabe F, et al. Implantation of mesenchymal stem cells overexpressing
                   endothelial nitric oxide synthase improves right ventricular impairments caused by pulmonary hypertension. Circulation 2006;114:1181-5.
               112.  Liang OD, Mitsialis SA, Chang MS, Vergadi E, Lee C, et al. Mesenchymal stromal cells expressing heme oxygenase-1 reverse pulmonary
                   hypertension. Stem Cells 2011;29:99-107.
               113.  Takemiya K, Kai H, Yasukawa H, Tahara N, Kato S, et al. Mesenchymal stem cell-based prostacyclin synthase gene therapy for
                   pulmonary hypertension rats. Basic Res Cardiol 2010;105:409-17.
               114.  Luo L, Zheng W, Lian G, Chen H, Li L, et al. Combination treatment of adipose-derived stem cells and adiponectin attenuates pulmonary
                   arterial hypertension in rats by inhibiting pulmonary arterial smooth muscle cell proliferation and regulating the AMPK/BMP/Smad
                   pathway. Int J Mol Med 2018;41:51-60.
               115.  Umar S, de Visser YP, Steendijk P, Schutte CI, Laghmani EH, et al. Allogenic stem cell therapy improves right ventricular function by
                   improving lung pathology in rats with pulmonary hypertension. Am J Physiol Heart Circ Physiol 2009;297:H1606-16.
               116.  Liu K, Liu R, Cao G, Sun H, Wang X, et al. Adipose-derived stromal cell autologous transplantation ameliorates pulmonary arterial
                   hypertension induced by shunt flow in rat models. Stem Cells Dev 2011;20:1001-10.
               117.  Tan R, Li J, Peng X, Zhu L, Cai L, et al. GAPDH is critical for superior efficacy of female bone marrow-derived mesenchymal stem cells
                   on pulmonary hypertension. Cardiovasc Res 2013;100:19-27.
   113   114   115   116   117   118   119   120   121   122   123